

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo

TESIS

Para optar el título profesional de Ingeniero(a) Civil

AUTOR(ES)

Fukunaga Huapaya, Allison Noelia ORCID: 0009-0004-7304-8379

Gutierrez Sanchez, Gabriel Sebastian ORCID: 0009-0009-3400-7976

ASESOR

Garate Caceres, Francisco Hector ORCID: 0000-0003-0413-3399

Lima, Perú 2023

METADATOS COMPLEMENTARIOS

Datos de los autores

Fukunaga Huapaya, Allison Noelia

DNI: 73941983

Gutierrez Sanchez, Gabriel Sebastian

DNI: 72217837

Datos de asesor

Garate Caceres, Francisco Hector

DNI: 07640930

Datos del jurado

JURADO 1

Pereyra Salardi, Enriqueta

DNI: 06743824

ORCID: 0000-0003-2527-3665

JURADO 2

Lopez Silva, Maiquel

DNI: 002946058

ORCID: 0000-0002-0946-6160

JURADO 3

Carmenates Hernandez, Dayma Sadami

DNI: 002944620

ORCID: 0000-0001-5482-7562

Datos de la investigación

Campo del conocimiento OCDE: 2.01.01

Código del Programa: 732016

DECLARACIÓN JURADA DE ORIGINALIDAD

Nosotros, Fukunaga Huapaya, Allison Noelia, con código de estudiante N° 201610318, con DNI N° 73941983, con domicilio en Avenida Juan de Aliaga 559, distrito Magdalena, provincia y departamento de Lima, y Gutierrez Sanchez, Gabriel Sebastian, con código de estudiante N° 201611142, con DNI N° 72217837, con domicilio en Calle Richard Wagner 260, distrito San Borja, provincia y departamento de Lima, en nuestra condición de bachilleres en Ingeniería Civil de la Facultad de Ingeniería, declaramos bajo juramento que:

La presente tesis titulada: "Análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo" es de nuestra única autoría, bajo el asesoramiento del docente Francisco Hector Garate Caceres, y no existe plagio y/o copia de ninguna naturaleza, en especial de otro documento de investigación presentado por cualquier persona natural o jurídica ante cualquier institución académica o de investigación, universidad, etc.; la cual ha sido sometida al antiplagio Turnitin y tiene el 25% de similitud final.

Dejamos constancia que las citas de otros autores han sido debidamente identificadas en la tesis, el contenido de estas corresponde a las opiniones de ellos, y por las cuales no asumimos responsabilidad, ya sean de fuentes encontradas en medios escritos, digitales o de internet.

Asimismo, ratificamos plenamente que el contenido íntegro de la tesis es de nuestro conocimiento y autoría. Por tal motivo, asumimos toda la responsabilidad de cualquier error u omisión en la tesis y somos conscientes de las connotaciones éticas y legales involucradas.

En caso de falsa declaración, nos sometemos a lo dispuesto en las normas de la Universidad Ricardo Palma y a los dispositivos legales nacionales vigentes.

Surco, 02 de noviembre de 2023

Fukunaga Huapaya, Allison Noelia DNI N° 73941983 Gutierrez Sanchez, Gabriel Sebastian DNI N° 72217837

INFORME DE ORIGINALIDAD – TURNITIN

Análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en surquillo

INFORM	ME DE ORIGINALIDAD	
2 INDIC	5% 25% 2% 12% TRABAJOS DEL ESTUDIANTE	
FUENTI	ES PRIMARIAS	
1	hdl.handle.net Fuente de Internet	6%
2	repositorio.urp.edu.pe Fuente de Internet	4%
3	Submitted to Universidad Ricardo Palma Trabajo del estudiante	2%
4	repositorio.uncp.edu.pe Fuente de Internet	1 %
5	repositorio.ucv.edu.pe Fuente de Internet	1 %
6	repositorio.upla.edu.pe Fuente de Internet	1 %
7	www.trucoscandycrush.com Fuente de Internet	1%
8	tesis.ipn.mx Fuente de Internet	1%
	Ethiologic	

Dra. Vargas Chang Esther Joni

DEDICATORIA

A mis padres porque me dieron su constante apoyo durante todo el proceso y me motivaron a seguir.

A mis amigos porque fueron mi soporte durante toda la carrera.

Fukunaga Huapaya, Allison Noelia

A mis abuelos, que por encima de todo quiero que estén orgullosos. A mi mamá y familiares, que son lo más importante en mi vida. Y mis amigos, que siempre están en las buenas y en las malas.

Gutierrez Sanchez, Gabriel Sebastian

AGRADECIMIENTO

Agradecida con nuestros asesores por su tiempo y seguimiento continuo que nos sirvió de guía para este proyecto importante de nuestra carrera profesional Fukunaga Huapaya, Allison Noelia

Agradecido con el ingeniero Francisco Gárate, por guiarnos con su experiencia y por su compromiso hacia el desarrollo de la presente tesis. También con la Universidad Ricardo Palma, que me permitió conocer a personas excepcionales.

Gutierrez Sanchez, Gabriel Sebastian

ÍNDICE GENERAL

METADATOS COMPLEMENTARIOS	ii
DECLARACIÓN JURADA DE ORIGINALIDAD	iii
INFORME DE ORIGINALIDAD – TURNITIN	iv
DEDICATORIA	v
AGRADECIMIENTO	vi
ÍNDICE GENERAL	vii
ÍNDICE DE TABLAS	X
ÍNDICE DE FIGURAS	xii
RESUMEN	xiii
ABSTRACT	xiv
INTRODUCCIÓN	1
CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA	3
1.1. Planteamiento del problema	3
1.2. Formulación del problema	4
1.2.1. Problema General	4
1.2.2. Problemas Específicos	4
1.3. Objetivos de la investigación	5
1.3.1. Objetivos Generales	5
1.3.2. Objetivos Específicos	5
1.4. Delimitación de la investigación: temporal, espacial y temática	5
1.4.1. Delimitación temporal	5
1.4.2. Delimitación espacial	5
1.4.3. Delimitación temática	6
1.5. Justificación e importancia de la investigación	6
CAPÍTULO II: MARCO TEÓRICO	7
2.1. Antecedentes del estudio de investigación	7
2.1.1. Investigaciones internacionales	7
2.1.2. Investigaciones nacionales	8
2.2. Bases teóricas vinculadas a la variable o variables de estudio	10
2.2.1. Sistemas de control de respuesta sísmica	10
2.2.2. Amortiguador de masa sintonizada	11
2.2.3. Parámetros óptimos del amortiguador de masa sintonizada	13

2.2.4. Amortiguadores de masa sintonizada en el mundo	14
2.2.5. Respuesta dinámica	. 14
2.2.6. Determinación de la respuesta dinámica	15
2.3. Definición de términos básicos	. 19
CAPÍTULO III: SISTEMA DE HIPÓTESIS	20
3.1. Hipótesis o Supuestos Teóricos	20
3.1.1. Hipótesis principal	. 20
3.1.2. Hipótesis secundarias	20
3.2. Variables	20
3.3. Operacionalización de Variables	20
CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN	22
4.1. Tipo y nivel	22
4.1.1. Tipo	22
4.1.2. Nivel	22
4.2. Diseño de investigación	22
4.3. Población y muestra	22
4.3.1. Población	22
4.3.2. Muestra	22
4.4. Técnicas e instrumentos de recolección de datos	23
4.4.1. Técnicas de recolección de datos	23
4.4.2. Criterios de validez y confiabilidad de los instrumentos	23
4.4.3. Procedimientos para la recolección de datos	23
4.5. Técnicas de procesamiento y análisis de la información	24
CAPÍTULO V: ANÁLISIS SÍSMICO	25
5.1. Datos generales	25
5.2. Modelo Estructural en Etabs	25
5.2.1. Modelado de elementos	27
5.2.2. Carga viva y muerta	30
5.3. Diseño Sismorresistente	32
5.3.1. Zonificación	32
5.3.2. Perfiles de suelo y parámetros de sitio	32
5.3.3. Factor de amplificación sísmica	33
5.3.4. Categoría de las edificaciones y factor de uso U	. 34
5.3.5. Coeficiente básico de reducción de las fuerzas sísmicas	34

5.3.6. Regularidad Estructural	34
5.4. Análisis Dinámico Modal Espectral	41
5.4.1. Espectro de Respuesta	41
5.4.2. Deriva de entrepiso	42
CAPÍTULO VI: MODELAMIENTO DEL AMORTIGUADOR DE MASA	
SINTONIZADA (AMS)	45
6.1. Parámetros del AMS	45
6.1.1. Masa del AMS	45
6.1.2. Frecuencia del AMS	45
6.1.3. Amortiguamiento del AMS	45
6.1.4. Rigidez del AMS	46
6.2. Modelado del AMS en ETABS	46
6.2.1. Definición del AMS como forma	46
6.2.2. Proceso de Modelado del AMS en ETABS	47
CAPÍTULO VII: PRESENTACIÓN Y DISCUSIÓN DE LOS RESULTADOS	51
7.1. Resultados del Análisis Dinámico	51
7.1.1. Estructura sin AMS	52
7.1.2. Estructura con AMS	55
7.2. Comparativa del Análisis Dinámico	61
7.3. Discusión de los resultados	69
7.4. Contrastación de hipótesis	70
CONCLUSIONES	72
RECOMENDACIONES	73
REFERENCIAS BIBLIOGRÁFICAS	74
ANEXO A: Cronograma de actividades	78
ANEXO B: Presupuesto	78
ANEXO C: Matriz de operacionalización de variables	79
ANEXO D: Matriz de Consistencia	80
ANEXO E: Carta de Autorización	81

ÍNDICE DE TABLAS

Tabla 1 Estructuras con TMD en el mundo	14
Tabla 2 Límites para la distorsión del entrepiso	15
Tabla 3 Operacionalización de variables	21
Tabla 4 Resistencia a la compresión del concreto en elementos estructurales	26
Tabla 5 Cargas muertas de diseño consideradas en el modelo.	31
Tabla 6 Cargas vivas de diseño consideradas en el modelo.	31
Tabla 7 Factores de zona Z	32
Tabla 8 Factor de suelo S	33
Tabla 9 Periodos "Tp" y "TL"	33
Tabla 10 Sistemas estructurales	34
Tabla 11 Determinación de irregularidad de piso blando en dirección X-X	35
Tabla 12 Determinación de irregularidad de piso blando en dirección Y-Y	36
Tabla 13 Determinación de irregularidad de piso débil en dirección X-X	37
Tabla 14 Determinación de irregularidad de piso débil en dirección Y-Y:	37
Tabla 15 Cálculo de irregularidad geométrica vertical en dirección X-X	38
Tabla 16 Cálculo de irregularidad geométrica vertical en dirección Y-Y	39
Tabla 17 Factores para análisis sísmico.	41
Tabla 18 Deriva de entre piso según sismo en X-X	
Tabla 19 Deriva de entre piso por sismo en Y-Y	44
Tabla 20 Relación de masa, frecuencia y amortiguamiento óptimas	51
Tabla 21 Parámetros óptimos de los casos de estudio	51
Tabla 22 Parámetros del elemento link para cada caso de estudio	52
Tabla 23 Modos de vibración de caso 0	52
Tabla 24 Desplazamientos máximos de caso 0	53
Tabla 25 Derivas de entrepiso de caso 0	54
Tabla 26 Aceleración de entrepiso de caso 0	55
Tabla 27 Fuerza cortante basal de la estructura sin AMS	55
Tabla 28 Desplazamientos máximos en dirección X de casos 1 al 5	56
Tabla 29 Desplazamientos máximos en dirección Y de casos 1 al 5	57
Tabla 30 Derivas de entrepiso en dirección X de casos 1 al 5	57
Tabla 31 Derivas de entrepiso en dirección Y de casos 1 al 5	58
Tabla 32 Aceleraciones por nivel en dirección X de casos 1 al 5	59

Tabla 33 Aceleraciones por nivel en dirección Y de casos 1 al 5	60
Tabla 34 Fuerza cortante basal de la estructura con AMS	61
Tabla 35 Comparación de Desplazamientos máximos en el último nivel	62
Tabla 36 Comparación de derivas máximas	64
Tabla 37 Comparación de aceleraciones en el nivel 22	66
Tabla 38 Comparación de cortantes basales	68
Tabla 39 Cronograma de actividades	78
Tabla 40 Presupuesto	78
Tabla 41 Matriz de operacionalización de variables	79
Tabla 42 Matriz de consistencia	80

ÍNDICE DE FIGURAS

Figura 1 Ubicación del área de investigación	5
Figura 2 Amortiguador de masa traslacional	12
Figura 3 Amortiguador de masa tipo péndulo	12
Figura 4 Sistema de fuerzas del método estático de análisis	15
Figura 5 Modos de vibración de un edificio con diafragmas rígidos	17
Figura 6 Respuesta espectral por combinación modal	18
Figura 7 Procedimiento de diseño del amortiguador	24
Figura 8 Procedimiento de comparación de respuesta dinámica sin y con AMS	24
Figura 9 Procedimiento de comparación de respuesta para varias razones de masa	24
Figura 10 Vista 3D obtenida de ETABS de edificio multifamiliar	26
Figura 11 Definición de concreto f'c=210 kg/cm2 en software ETABS	27
Figura 12 Definición de columna C-1 del sótano 3 en software ETABS	28
Figura 13 Definición de la placa PL-15 cm en software ETABS	28
Figura 14 Definición de la viga VST-01 en software ETABS	29
Figura 15 Definición de losa aligerada 20cm de espesor	30
Figura 16 Definición de cargas vivas y muertas en el modelo de ETABS	31
Figura 17 Espectro de respuesta obtenido en ETABS	42
Figura 18 Esquema de tanque elevado AMS	47
Figura 19 Sección de concreto como sala en ETABS	48
Figura 20 Modelación de link en ETABS	48
Figura 21 Propiedades de link	49
Figura 22 Esquema en 3D de AMS	50
Figura 23 Centro de masas del edificio	50
Figura 22 Comparación de desplazamientos máximos en la dirección X	61
Figura 23 Comparación de desplazamientos máximos en la dirección Y	62
Figura 24 Comparación de derivas en la dirección X	63
Figura 25 Comparación de derivas en la dirección Y	64
Figura 26 Comparación de aceleraciones en la dirección X	65
Figura 27 Comparación de aceleraciones en la dirección Y	66
Figura 28 Comparación de cortante basal en la dirección X	67
Figura 29 Comparación de cortante basal en la dirección Y	68

RESUMEN

La presente tesis abordó la implementación de un amortiguador de masa sintonizada (AMS) para mejorar la respuesta dinámica de un edificio irregular de residencia multifamiliar de 22 pisos en el distrito de Surquillo frente a cargas de sismo. La investigación fue de tipo aplicada con enfoque cuantitativo y de nivel descriptivo. Se efectuó el análisis sísmico dinámico de la estructura sin y con AMS para razones de masa (μ) del 1% al 5% de acuerdo a los criterios estipulados en la Norma Sismorresistente E.030, con apoyo del software ETABS. Los principales resultados fueron una reducción en los desplazamientos y derivas máximas de un 17% para μ=1% hasta un 29% para μ=5%. Por otro lado, la cortante basal se redujo en un rango de 6% a 10%, mientras que las aceleraciones máximas entre 0% y 1%. En la dirección X se obtuvo una menor reducción debido a que el AMS se sintonizó con respecto al modo fundamental. Se obtuvieron reducciones del orden de 9% a 22%, 4% a 11% y 1% a 5% para desplazamientos, cortantes y aceleraciones respectivamente, para razones de masa de 1% a 5%.

Palabras clave: Amortiguador de masa sintonizada, respuesta dinámica, análisis sísmico

ABSTRACT

The present thesis addressed the implementation of a Tuned Mass Damper (TMD) to

improve the dynamic response of a 22-story irregular multifamily housing building in the

Surquillo district against seismic loads. The type of research was an applied nature with

a quantitative and descriptive approach. Dynamic seismic analysis of the structure was

conducted both with and without the TMD for mass ratios (µ) ranging from 1% to 5%,

following the criteria established in Seismic-Resistant Standard E.030, using the ETABS

software. The main results showed a reduction in maximum displacements and drifts

ranging from 17% for $\mu = 1\%$ up to 29% for $\mu = 5\%$. On the other hand, the base shear

was diminished in the range of 6% to 10%, while maximum accelerations ranged from

0% to 1%. In the X direction, a smaller reduction was achieved because the TMD was

tuned based on the fundamental mode. Reductions in the order of 9% to 22%, 4% to 11%,

and 1% to 5% were obtained for displacements, shears, and accelerations, respectively,

for mass ratios from 1% to 5%.

Keywords: Tuned mass damper, dynamic response, seismic analysis

xiv

INTRODUCCIÓN

La aparición de nuevas tecnologías antisísmicas surge a partir de la necesidad de sistemas efectivos y eficientes en reducir los daños ocasionados por los impredecibles movimientos telúricos, sobre todo en áreas con sismicidad frecuente como lo es el Anillo de fuego del Pacífico, una de las zonas de subducción más relevantes y activas del planeta y de la cual el Perú se encuentra directamente afectado.

Una de estas tecnologías que surgen como alternativa frente al control de oscilaciones de las estructuras son los amortiguadores de masa sintonizada (AMS), un método de control pasivo de vibraciones, comúnmente colocado en la parte mas alta de la edificicación, que permitiría el mejoramiento de la respuesta dinámica del sistema principal al cual se acopla. Sin embargo, en el Perú no se ha aplicado en gran medida.

Por tal motivo, el principal objetivo de esta tesis es evaluar el comportamiento sísmico de una edificación de 22 pisos en el distrito de Surquillo implementando el AMS con la finalidad de determinar su eficacia y ratificar su relevancia para ser considerados como una solución viable para el diseño sismorresistente.

El capítulo I, describe el planteamiento del problema propuesto tanto general como específicos, objetivos generales y específicos, desarrollo de la delimitación temporal, espacial y temática y finalmente se hace una breve justificación de la investigación y su importancia.

El capítulo II, presenta el marco teórico, se exponen 3 referencias nacionales y 3 internacionales basados en el tema de la investigación. Así mismo, se describe las bases teóricas que hacen referencia a las variables y se definen los términos básicos.

El capítulo III, describe el sistema de hipótesis, se describen los supuestos teóricos, general y específicos, así como las variables identificadas en la investigación.

El capítulo IV, metodología de la investigación, se expone el tipo, nivel y el diseño de la investigación, se describe la población y muestra identificada, las técnicas e instrumentos utilizados para la recolección de datos y las técnicas para el procesamiento y análisis de la información.

El capítulo V, presenta el análisis sísmico, describe las características generales del proyecto de estudio, el modelado estructural con ayuda del software ETABS y se realizó el análisis dinámico de tipo modal espectral tomando como base la norma E.030.

El capítulo VI, modelamiento del amortiguador de masa sintonizada (AMS), aborda el diseño del AMS y su modelado e incorporación al edificio multifamiliar de 22 pisos en el software ETABS.

El capítulo VII, presentación y discusión de resultados, se presentan los resultados (derivas, desplazamientos, cortantes y aceleraciones) del análisis sísmico del edificio multifamiliar sin AMS en contraste con los obtenidos tras incorporar el sistema de control pasivo.

Para finalizar, se presentan las conclusiones en base a los objetivos e hipótesis propuestos y las recomendaciones de la investigación.

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Planteamiento del problema

Tavera y Buforn (1998) señalan que la actividad sísmica presente en el Perú se asocia primariamente al procedimiento de subducción de la placa de Nazca frente a la placa Sudamericana. Esta zona forma parte del Anillo de Fuego del Pacífico, caracterizada por ser una de las regiones sísmicas más importantes y con mayor actividad de la tierra.

Los análisis de peligro sísmico, sin embargo, demuestran la existencia de un silencio sísmico desde el año 1746 en Lima que dará lugar eventualmente a un movimiento telúrico de gran magnitud.

Según el IGP (2021) el área de máximo acoplamiento sísmico identificada en la región central del Perú, con dimensiones de 460x150 km², podría originar un movimiento telúrico con una magnitud M8.8 cerca de la costa de Lima y del Callao. Pulido et al. (como citado en IGP, 2021) estima que se producirá un sacudimiento del suelo que sobrepasaría los 500 cm/s² (0.5g).

Frente al exponencial crecimiento demográfico que propicia el crecimiento vertical de la ciudad y la edificación de estructuras cada vez más altas, el diseño sismorresistente ha tomado un carácter obligatorio en la estructuración de nuevas edificaciones. Por otra parte, las investigaciones propician la aparición de nuevas tecnologías antisísmicas efectivas para reducir las vibraciones que pueden ser aprovechadas en nuestro país con el objetivo de aminorar la exposición a peligros que afecten la integridad de las personas y a los daños estructurales. En tal sentido, estos amortiguadores de tipo masa sintonizada (AMS) se muestran como una opción para disminuir las oscilaciones de las estructuras frente a los sismos.

Según Rahimi, Aghayari y Samali (2020) para asegurar que la respuesta dinámica de la estructura sea controlado con éxito con AMS, existen ciertos factores que hay que considerar al diseñarlo e implementarlo en una estructura. Los parámetros modales tanto de la estructura como del amortiguador pueden afectar significativamente la respuesta estructural y, por lo tanto, los TMD deben tener ciertas características modales, de lo contrario, pueden incluso tener efectos adversos. Si bien está bien establecido que la relación de masa más alta mejora el rendimiento de los TMD, generalmente está limitada por la factibilidad técnica y económica.

De acuerdo con Sakr (2015), los sistemas TMD han sido ampliamente empleados en diversas estructuras a nivel global, como la torre CN en Toronto en 1975 y el Centro

Financiero Mundial de Shanghái en Shanghái en 2008. Se destaca el caso del TMD de 660 toneladas instalado en la torre Taipei en Taiwán en 2004, que se reconoce como el TMD más grande y reconocido.

La actualización de la Norma E030 de diseño sismorresistente del año 2016 incluyó la posibilidad de aplicación de sistemas de disipación de energía, dando posibilidad al uso de amortiguares de masa sintonizada como solución constructiva a los requerimientos por sismos. Sin embargo, la falta de investigación en el Perú sobre estos dispositivos ha impedido su implementación y aprovechamiento. (Tinman et al., 2017)

El reducido uso del amortiguador de masa sintonizada en el Perú exige mayores investigaciones y pruebas de que es útil y beneficioso al implementarse en edificios esbeltos, pudiendo ser rentable en el tiempo y de acuerdo al costo promedio de departamentos y/o oficinas en Lima.

El distrito de Surquillo pertenece al sector de Lima Moderna, sector urbano que junto a Lima Centro concentran los edificios residenciales con la mayor altura promedio, con medias de 12.5 y 13.9 niveles respectivamente (Capeco, 2020).

La presente investigación propone el uso del amortiguador de tipo masa sintonizada en uno de los distritos de mayor crecimiento vertical en los últimos años como lo es el distrito de Surquillo, implementado a un edificio de 22 niveles, comparando el desempeño y respuesta dinámica sin y con la implementación del amortiguador de masa sintonizada y analizando la influencia de la razón de masa en esta estructura frente a un sismo.

1.2. Formulación del problema

1.2.1. Problema General

¿Cómo realizar el análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo?

1.2.2. Problemas Específicos

- a) ¿Cómo diseñar el amortiguador de masa sintonizada a implementar en el edificio multifamiliar?
- b) ¿En qué medida la razón de masa influye en los desplazamientos y derivas de un edificio multifamiliar ubicado en Surquillo?
- c) ¿En qué medida la razón de masa influye en las cortantes y aceleraciones de un edificio multifamiliar ubicado en Surquillo?

1.3. Objetivos de la investigación

1.3.1. Objetivos Generales

Realizar el análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo.

1.3.2. Objetivos Específicos

- a) Diseñar el amortiguador de masa sintonizada a implementar en el edificio multifamiliar.
- b) Comparar la influencia de la razón de masa en términos de desplazamientos y derivas del edificio implementado con el AMS.
- c) Comparar la influencia de la razón de masa en términos de cortantes y aceleraciones del edificio implementado con el AMS.

1.4. Delimitación de la investigación: temporal, espacial y temática.

1.4.1. Delimitación temporal

Este proyecto tendrá una duración de 6 meses, iniciando el mes de mayo y culminando el mes de noviembre. Ver cronograma de actividades en el ANEXO 1.

1.4.2. Delimitación espacial

El objeto estudiado se encuentra ubicado en Av. Angamos Este N°1002-1004-1006, en el distrito de Surquillo, en la provincia de Lima, departamento de Lima, en las coordenadas geográficas 12°6'48"S 77°1'16.2"O. La ubicación del objeto estudiado se muestra en la Figura 1.

Figura 1 *Ubicación del área de investigación*

Nota. Elaboración propia

1.4.3. Delimitación temática

La investigación pertenece al área de estructuras, pues radica en investigar el comportamiento y desempeño estructural en términos de desplazamientos, aceleraciones y cortantes, además de costo y economía de la implementación del sistema AMS.

1.5. Justificación e importancia de la investigación

Justificación teórica: Se tiene como base teórica la norma E.030 Diseño Sismorresistente, donde se expresan los lineamientos para un adecuado análisis estructural, así como los requisitos de una edificación sismorresistente.

Justificación práctica: La presente investigación aportará una valiosa fuente de información para proyectistas y diseñadores estructurales, que podrán evaluar la aplicación de los AMS en futuros proyectos de condiciones similares. Además, servirá de punto de comparación para otros trabajos investigativos que no solo abarquen el tema de amortiguadores de masa sintonizada, sino también a investigaciones sobre otros tipos de disipadores y aisladores sísmicos, cuya eficiencia en reducir la respuesta dinámica podrá ser contrastada y evaluada para determinar el dispositivo adecuado para cada tipo de circunstancia.

Justificación social: Los beneficiarios directos por el desarrollo de esta investigación son los residentes del edificio multifamiliar, cuya cantidad estimada es de 600 personas. Además, es posible afirmar que se la presente tesis favorece directamente a los diseñadores estructurales, que podrán evaluar más facilmente la conveniencia de implementar un AMS en sus proyectos, sin embargo, el mayor beneficio lo obtiene la población de Surquillo y Lima, que podrá estar más protegida ante eventuales movimientos sísmicos, minorizando las pérdidas económicas por fallas estructurales y más aún disminuyendo el riesgo sísmico y pérdida de vidas.

Importancia del estudio: La presente tesis no solo mostrará las bondades que brinda la aplicación de AMS a edificios de gran altura, sino que expondrá la sensibilidad de la respuesta dinámica a la variación de la razón de masa del amortiguador, aplicado a un proyecto real ubicado en un distrito con alta proyección de crecimiento vertical. En tal sentido, la importancia se fundamenta en la necesidad de encontrar soluciones efectivas y económicas que permitan minorizar los daños a estructuras civiles en un país de alta sismicidad como el Perú.

CAPÍTULO II: MARCO TEÓRICO

2.1. Antecedentes del estudio de investigación

2.1.1. *Investigaciones internacionales*

Urrego (2018) en el proyecto de tesis que realizó titulada "Comparación del comportamiento estructural en edificaciones controladas sísmicamente con un amortiguador de masa sintonizada" de la Universidad EIA de Medellin, Colombia, llevó a cabo un estudio con el propósito de contrastar el rendimiento sísmico de construcciones equipadas con sistemas de amortiguación de masa sintonizada (TMD) en comparación con una estructura convencional. Estas edificaciones se ubicaron en una región de alta actividad sísmica y se evaluó el daño que experimentaron después de un movimiento sísmico. Como caso estudiado se utilizó un centro hospitalario en Armenia. Los principales resultados fueron: reducción en el índice de daño entre 10% y 60% para los diferentes casos de sismo estudiados. Notaron que la reducción de índice de daño no es constante en todos los niveles, sin embargo, mejorando el desempeño de los niveles mas altos. También se halló que cuando se sintoniza el TMD con la masa de la estructura se mejora el comportamiento del mismo cuando la estructura se estimula a frecuencias similares a la natural. Los autores concluyen que, debido a la gran variación porcentual, la protección del TMD depende de las características del sismo y el trabajar solo con un 1 sismo se iban a obtener resultados muy positivos ya que cada acelerograma provoca una reacción diferente a una misma estructura. Además, notaron que trabajar con estructuras de mayor ductilidad, el TMD pierde efecto de disminuir el daño estructural, esto a la vez es una ventaja vista desde el aspecto económico porque se utiliza menor cuantía de acero.

Espinoza et al. (2018) en su artículo titulado "Análisis de un amortiguador de masa sintonizada óptimo en estructuras asimétricas no lineales" de la Universidad del Bío-Bío ubicada en Concepción, Chile, tuvo la finalidad de proponer 2 enfoques para disminur el daño en una estructura asimétrica. El primero se relaciona con la disipación de energía histerética, mientras que el segundo se basa en minimizar el daño mediante la dsiminución de un factor de correlación entre el desplazamiento y la rotación del nivel de la planta. Como resultados obtuvieron que, tanto para un Ancho de Banda amplio como angosto, donde se obtiene la mayor disipación de energía en el eje donde esta ubicado el AMS, mientras se amplifica en los demás. En el proceso de utilizar un ancho de banda angosto, la disipación de energía es bastante mayor debido a que el desempeño de la estructura

estudiada sin el AMS demuestra una desigual distribución de energía disipada. Finalmente, los autores concluyen que en los dos criterios utilizados para reducir el daño estructural son muy susceptibles a la frecuencia y a la posición en donde se coloque el AMS. Para el caso del ancho de banda amplio, la frecuencia suele sintonizarse mejor con la frecuencia lineal equivalente del modo que predomina, sin embargo, para el ancho de banda angosto, el AMS se sintoniza con la frecuencia que predomina en la estructura.

Said, Matsagar (2019) elaboraron un artículo titulado "Control de respuesta sísmica de un edificio de acero con un amortiguador de masa sintonizada" para la revista asiática de ingeniería civil. Tuvieron como objetivo estudiar la efectividad del posicionamiento y sintonizado de un amortiguador de masa para disminuir la respuesta dinámica de una estructura de 20 pisos constituido por pórticos de acero por medio de un análisis tiempo historia ante 4 registros sísmicos. Los resultados fueron analizados a través de gráficos tiempo historia del desplazamiento del último nivel del edificio, mostrando generalmente una menor amplitud cuando el amortiguador se encuentra en el piso superior. Los autores concluyeron que el AMS es más efectivo en mitigar el desplazamiento cuando esta sintonizado con la frecuencia fundamental y posicionado en la parte superior del edificio a controlar, aunque la respuesta post-pico puede no disminuir por estar dominado por mayores frecuencias modales y que incrementar la masa del TMD resulta en la reducción de la respuesta en la mayoría de los parámetros estudiados. Se puede concluir que este artículo nos permite observar el desempeño de los AMS en reducir la respuesta dinámica al posicionarlos en diferentes ubicaciones.

2.1.2. *Investigaciones nacionales*

Cotacallpa (2017) en su proyecto de tesis que se titula "Análisis de un edificio asimétrico de 10 niveles de concreto armado con amortiguadores de masa sintonizada" de la Universidad Nacional de San Agustín ubicada en Arequipa, Perú, se realizó con el objetivo de usar AMS para mejorar el comportamiento dinámico de la edificación. Los principales resultados fueron: una disminución de la cortante del análisis dinámico espectral del 35% en la dirección X-X y una disminución de 24% en la dirección Y-Y. Una disminución de las derivas de 37% en la dirección X-X y de 26% en la dirección Y-Y. En cuanto al costo se notó un aumento de 3.11% en el presupuesto con la implementación del AMS. El autor concluye que, la posición de los AMS influye en la respuesta dinámica ya que se obtienen mejores resultados cuando estos están lo más próximo al centro de masas de la edificación. Se obtuvieron respuestas positivas en cuanto a cortante y derivas, sin embargo, el aumento del costo es mínimo y por ello recomiendan

implementarlo siendo los beneficios mucho mayores. Finalmente recomiendan efectuar un análisis dinámico no lineal que permita observar la forma de comportarse en el rango inelástico. Concluimos que esta tesis nos aporta resultados positivos al implementar un AMS en una estructura, nos brinda una base para realizar el análisis dinámico en un edificio no tan grande con el del presente trabajo de estudio. Nuestro proyecto complementaría la base de datos utilizando los mismos parámetros para una estructura de mayor altura.

Ayhuasi y Añamuro (2020) en su tesis titulada «Comparación de la respuesta estructural en un edificio de 20 niveles con amortiguadores de masa sintonizada de tipo convencional y pendular mediante modelos físicos a escala reducida» de la Universidad Peruana Unión ubicada en Puno, Perú, se realizó con el objetivo de hacer una comparativa de la respuesta estructural utilizando AMS convencionales y pendulares a través de modelos físicos a escala reducida, apoyandose de una mesa vibratoria en la base del modelo que lo someterá a aceleraciones sísmicas. Los principales resultados obtenidos fueron: al realizar un modelo a escala, el periodo de la estructura fue semejante al real. Una reducción de desplazamientos y aceleraciones máximas para los 3 casos de sismo estudiados cuando se implementa el AMS en la estructura. Los autores concluyen que el AMS convencional tiene mejor respuesta estructural al reducir en un 40.66% los desplazamientos frente al 29.98% del AMS pendular, en promedio. Además, el modelo físico cuenta con un periodo muy parecido al de la estructura real, por lo que es un buen comienzo para evaluar la efectividad del AMS. Finalmente concluimos que esta tesis es de gran aporte por la similitud en el tema de estudio con el presente proyecto, nos demuestra resultados positivos, además, nos demuestra que las practicas a escala y en digital no se alejan de la realidad.

Loa (2022) en su tesis de maestría titulada "Control de la respuesta dinámica en el puente peatonal Los Próceres mediante la incorporación de amortiguadores viscosos y de masa sintonizada" de la Pontificia Universidad Católica del Perú" ubicada en Lima, Perú, tuvo de principal obtejo de estudio a la respuesta dinámica bajo la carga peatonal del puente mencionado incluyendo amortiguadores de tipo masa y de tipo viscosos. Los resultados obtenidos fueron la mejora de la respuesta dinámica en términos de aceleración a un 42.3% y 35.9% frente a la respuesta sin dispositivo de control para amortiguadores con razones de masa de 0.005 y 0.02 respectivamente. Además, se observó que se tiene mejor comportamiento al incorporar un único AMS en el puesto de máxima deflexión que al colocar varios amortiguadores distribuidos con una masa equivalente. En cuanto a

los amortiguadores de fluido viscoso, no se obtuvieron cambios significativos en la respuesta dinámica. El autor concluye que el uso de amortiguadores de masa brinda mayor efectividad y a su vez produce menos cambios en la estructura en comparación con el uso de amortiguadores viscosos. De esta investigación podemos concluir que los AMS son también una alternativa factible para la disminución de la respuesta dinámica en estructuras que difieren de las edificaciones, como pueden ser los puentes.

2.2. Bases teóricas vinculadas a la variable o variables de estudio

2.2.1. Sistemas de control de respuesta sísmica

Se puede controlar la respuesta sísmica en edificaciones mediante la inclusión de sistemas adicionales con el proposito de controlar o disipar la energía impuesta por los sismos a partir de variar ciertas características dinámicas de la estructura (Oviedo & Duque, 2006). Se clasifican en sistemas de control pasivos, semiactivos y activos e híbridos, de acuerdo a la energía que se debe proveer para su funcionamiento (Higashino & Okamoto, 2006). Los controles pasivos se dividen en sistemas de aislamiento sísmico, disipadores de energía y efecto de masa adicional, siendo los amortiguadores de masa sintonizada típicos pertenecientes a esta última subcategoría, sin embargo, también es posible encontrar amortiguadores activos y semiactivos.

2.2.1.1. Sistemas de Aislamiento Sísmico

Según Genatios (2016):

El funcionamiento de un aislador sísmico se basa en generar una discontinuidad en la transmisión del movimiento de la fundación a la estructura. De esta manera no se transfiere la totalidad de la energía del sismo a la estructura; sólo se transmite una pequeña porción de ese movimiento de la fundación por lo que la estructura sufre pequeñas deformaciones y se limitan los daños. La estructura mantiene su respuesta mayormente en el régimen elástico, y hasta puede llegar a comportarse como un cuerpo rígido. De esta manera, se reducen las demandas de ductilidad de la estructura aislada, lo cual trae importantes simplificaciones en el detallado de los miembros estructurales, y en la protección de elementos no estructurales. (p.36)

Korswagen et al. (2012) indica que entre los modelos de aisladores más importantes que existen son los aisladores elastoméricos de caucho de bajo amortiguamiento (LRD), los aisladores con núcleo de plomo (LRB), los aisladores de alto amortiguamiento (HDR) y el sistema de péndulo de fricción invertido y de doble curvatura (p.11).

2.2.1.2. Sistemas de disipación de energía

Entre los sistemas que disipan energía se tienen a los amortiguadores de fricción, viscoelásticos, de fluido viscoso e histeréticos.

Herrera (2018) afirma que:

La función de los amortiguadores es concentrar la energía de ingreso del sismo, reduciendo la energía que absorberían los elementos estructurales. Cuando un edificio no posee dispositivos de amortiguamiento, la energía total que ingresa al sistema es absorbida casi en su totalidad por los elementos estructurales y liberada mediante la deformación elástica e inelástica (p. 14).

2.2.1.3. Sistemas de efecto de masa

Los sistemas de efecto de masa tienen como principio reducir los movimientos y desplazamientos de la estructura al adicionar una masa al edificio que por medio de amortiguadores y resortes generan fuerzas contrarias a la excitación. Los amortiguadores de masa sintonizada y los de tipo líquido sincronizado se encuentran dentro de esta categoría (Oviedo & Duque, 2006).

2.2.2. Amortiguador de masa sintonizada

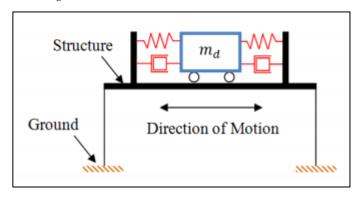
2.2.2.1. Definición

Montanaro (2002) define al amortiguador de masa sintonizada como:

Una herramienta ingenieril clásica que consiste en una masa, un resorte y un amortiguador viscoso colocados en el sistema vibrante principal para atenuar la vibración no deseada a una frecuencia determinada. La frecuencia natural del amortiguador se sintoniza cerca de la frecuencia natural del sistema principal provocando que el amortiguador vibre en resonancia, disipando la energía absorbida a través de los mecanismos de amortiguamiento del AMS. (p. 7)

2.2.2.2. Tipos de amortiguador de masa sintonizada

Ileva (2019) indica que "se pueden clasificar según la forma en la que funcionan: sistemas activos, semiactivos y pasivos" (p. 20)

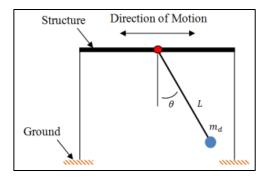

Los amortiguadores pasivos funcionan sin necesidad de recibir energía externa. Entre los más conocidos encontramos al AMS traslacional o convencional y al AMS pendular.

Los amortiguadores activos, por su parte, si requieren de electricidad que permita mantener el funcionamiento del actuador que será ajustado por medio de un algoritmo que modificará determinados parámetros del mismo para optimizar su efectividad. La necesidad de energia externa los hace susceptibles a los cortes eléctricos que puedan ocurrir durante un sismo (Martínez et al., 2022).

2.2.2.2.1. Amortiguador de masa traslacional

Lourenco (2011) indica que "los AMS traslacionales pueden ser unidireccionales, donde el movimiento de la masa del AMS está restringido a una sola dirección, colocando la masa en una serie de rieles o rodamiento de rodillos, o bidireccionales, donde la masa puede moverse a lo largo de ambos ejes coordenados" (p.8). La Figura 2 muestra la idealización del sistema descrito.

Figura 2 *Amortiguador de masa traslacional*


Nota. (Lourenco, 2011)

2.2.2.2. Amortiguador de masa tipo péndulo

Según Connor (como se cita en Esteba, 2020):

Los AMS tipo péndulo reemplazan el sistema de resorte y amortiguador traslacional con un péndulo, que consiste en una masa soportada por un cable que gira alrededor de un punto. Son comúnmente modelados como un péndulo simple. Para pequeñas oscilaciones angulares se comportarán de manera similar a un AMS traslacional y se puede modelar de manera idéntica con una rigidez equivalente y relación de amortiguamiento equivalente (p. 54). La Figura 3 muestra la idealización del sistema descrito.

Figura 3 *Amortiguador de masa tipo péndulo*

Nota. (Lourenco, 2011)

2.2.3. Parámetros óptimos del amortiguador de masa sintonizada

Den Hartog (1967) definió los parámetros óptimos para implementar amortiguadores de masa sintonizada en sistemas con múltiples grados de libertad. Estos son la relación de masa, relación de frecuencia y relación de amortiguamiento.

2.2.3.1. Relación de masa

Se describe como una relación que compromete a la masa del amortiguador de masa sintonizada y de la estructura.

$$\mu = \frac{m}{M} = \frac{masa \ AMS}{masa \ estructura}$$

2.2.3.2. Relación de Frecuencia

Se describe como una relación que compete a la frecuencia del amortiguador de masa sintonizada y a la de la estructura.

$$f = \frac{\omega_a}{\omega_E} = \frac{\text{frecuencia natural del ams}}{\text{frecuencia natural de la estructura}}$$

Donde:

$$\omega_a^2 = \frac{k}{m}$$

$$\omega_E^2 = \frac{K}{M}$$

k = rigidez del ams

K = rigidez de la estructura

La relación de frecuencias óptimas según den Hartog es:

$$f_{óptimo} = \frac{1}{1+\mu}$$

2.2.3.3. Relación de Amortiguamiento

La relación de amortiguamiento está demostrada por la ecuación:

$$\xi = \frac{C_a}{2\omega_a m}$$

Donde:

 $C_a = amortiguamiento del AMS$

La relación de amortiguamiento óptima según den Hartog es:

$$\xi_{\acute{o}ptimo} = \sqrt{\frac{3\mu}{8(1+\mu)^3}}$$

2.2.4. Amortiguadores de masa sintonizada en el mundo

Gutiérrez y Adeli (como citado en Martínez et al., 2022) lograron recopilar las estructuras más representativas de la donde se ha implementado este tipo de dispositivo de disipación pasiva. La Tabla 1 muestra dichas estructuras junto con su altura, ubicación, año de construcción, tipo y peso de la masa.

Tabla 1Estructuras con TMD en el mundo

Nombre	Altura (m)	Ciudad	Año	Tipo	Peso (Ton)
CN Tower	553	Toronto, Canadá	1975	2 TMD	18
Jhon Hancock	241	Boston, MA	1976	4 TMD	600
Citycorp Center	278	New York, USA	1978	1 TMD	370
Sydney Tower	305	Sydney	1980	2 TMD	220
Chiba Port Tower	125	Chiba, Japón	1986	2 TMD	10 y 15
Yokohama Marine	101.3	Yokohama, Japón	1987	TLCD	1.7
Gold Tower	158	Chiba, Japón	1988	16 TLCDs	10
		•			_
Fukuoka Tower	234	Fukuoka, Japón	1989	2 TMD	25-30
Kyobashi Center	33	Tokyo, Japón	1989	2 TMD	5
BASF	100	Antwerp	1992	TMD	8.5
P&G Japan	131	Kobe, Japón	1993	3 TMD	270
Tokyo Airport	77.6	Tokyo, Japón	1993	TLCD	0.025 c/u
Hotel Burj-Al-Arab	321	Dubai, U.A.E	1997	11 TMD	5 c/u
Petronas Twin	451.9	Kuala L. Malasia	1997	12 TMD	0.08 c/u
Park Tower	252.2	Chicago, USA	2000	TMD	300
The Trump World	262.4	New York, USA	2001	TMD	600
Taipei 101	449	Taipei, Taiwan	2004	2 TMD	730 y 4.5
Bloomber Tower	245.6	New York, USA	2004	TMD	600
Millennium Tower	284	Dubai, U.A.E	2005	TMD	0.3
Aspire Tower	300	Doha, Qatar	2006	TMD Péndulo	140
Comcast Center	297.1	Philadelphia	2008	TMD	1300
Canton Tower TV	600	Guangzhou	2010	ATMD y TMD	50 y 600
Estela de la Luz	104	Mexico City	2010	8 TMD	3
Tokyo Sky Tower	634	Tokyo, Japón	2012	TMD	100

Nota. Extraído de Gutiérrez y Adeli (como se citó en Martínez et al., 2022)

2.2.5. Respuesta dinámica

2.2.5.1. Definición e indicadores

(Bazan & Meli, 1983, como citado en Hernández et al., 2020) señalaron que la respuesta dinámica de cierta estructura implica la evaluación de cada desplazamiento, de la velocidad y aceleraciones al ser sometido a cierta fuerza lateral o a cierto movimiento

sísmico en la base. Estos parámetros están influenciados por la magnitud y el tiempo de exitación, las particularidades del edificio y del suelo de fundación.

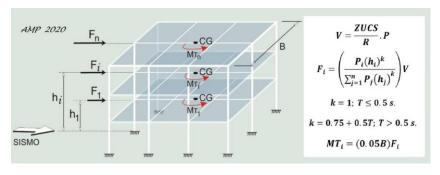
Cortante basal: Es una suma algebraica, que se toma en la base, de aquellas fuerzas sísmicas de dirección horizontal producidas en el edificio (NSR-10, 2010)

Derivas: Es la diferencia en el desplazamiento horizontal de 1 nivel comparado con su nivel adyacente. La norma peruana E.030 (2020) limita las derivas como se indica en la Tabla 2.

Tabla 2 *Límites para la distorsión del entrepiso*

Material predominante	Deriva (Δ _i /h _{ei})
Concreto armado	0.007
Acero	0.010
Albañilería	0.005
Madera	0.010
Edificios de concreto armado con muros de ductilidad limitada	0.005

Nota. Norma E.030 Diseño Sismorresistente (2020)


Aceleraciones de entrepiso: Tuan y Shang (2014) indican que "la aceleración de entrepisos de edificios puede ser controlada para satisfacer el criterio de seguridad, así como también el criterio de serviciabilidad para el confort humano" (p. 148).

2.2.6. Determinación de la respuesta dinámica

2.2.6.1. Análisis estático o de fuerzas equivalente

La norma E.030 (2020) lo define como una técnica que simboliza las solicitaciones sísmicas mediante una serie de fuerzas que trabajan en el centro de masas de cada piso del edificio (p. 16). Donobhan (2007) indica que las demandas que debe soportar están definidas por una fuerza que se asocia a la demanda espectral que a su vez corresponde al periodo fundamental del edificio (p. 8). La Figura 4 muestra el sistema de fuerzas del anális estático.

Figura 4Sistema de fuerzas del método estático de análisis

Nota. Muñoz (2020)

2.2.6.2. Modos de vibración

Amaguaña & Yumbay (2016) indican que

Ante la eventualidad de un sismo, una edificación, responderá vibrando u oscilando de varios modos o formas; estas formas de vibrar se conocen como modos de vibración. Los modos de vibración se producen a diferentes períodos, por lo que, durante un acontecimiento sísmico, pueden afectar en mayor o menor porcentaje a la edificación, dependiendo de la frecuencia del sismo.

En tal sentido, los modos de vibración son un indicador de como responderá una edificación ante una excitación sísmica. Aguiar (2012) establece que el primer modo de vibración es un elemento clave para definir si la respuesta sísmica de la estructura ha sido buena o mala (p. 206).

Como se indica en Montserrat (2013)

Para encontrar los modos de vibración, con sus correspondientes períodos o frecuencias, hay que resolver el problema de análisis modal de las ecuaciones dinámicas de movimiento para un sistema de múltiples grados de libertad en el caso de oscilación libre. El análisis modal se reduce a un problema de autovalores (también conocidos como valores propios) y autovectores (también conocidos como vectores propios). La interpretación física de los autovalores y autovectores representan las frecuencias y modos de vibración, respectivamente (p. 37).

2.2.6.3. Resonancia

La resonancia se da cuando el periodo fundamental del edificio y el periodo de la excitación sísmica que lo afecta son similares, generando desplazamientos cada vez mayores. Para Amaguaña y Yumbay (2016) este fenómeno puede resultar altamente destructivo en las estructuras, siendo la mejor solución para contrarrestar dicho fenómeno sería considerar algun tipo de amortiguamiento, el cual se ocupará de reducir la amplitud de la vibración (p. 17).

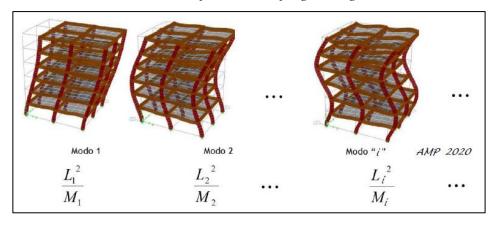
2.2.6.4. Amortiguamiento

Celigüeta (2011) refiere que en cualquier fenómeno de dinámica estructural se origina una reducción de energía debido a la fricción interna del material de la edificación, que atenúa el movimiento de la misma.

2.2.6.5. Análisis de elementos finitos

Para Celigüeta (2011) dicho análisis se fundamenta en la suposición de discretización de parámetros distribuidos cuya estimación se identifica como la formulación en el

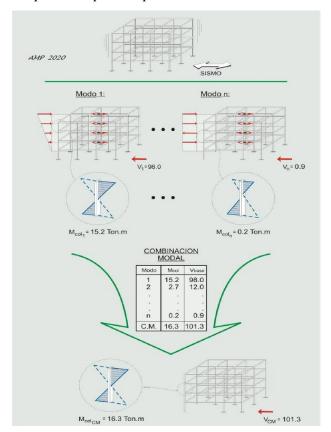
desplazamiento. Los elementos finitos son las lineas y/o superficies en ciertas regiones contiguas y disjuntas entre sí, hechas por formas geométricas simples y estandarizadas.


2.2.6.6. Análisis dinámico modal espectral

Calero (2013) indica:

El análisis espectral es un enfoque de análisis dinámico aproximado que se emplea para obtener la respuesta de una estructura. Esta respuesta se calcula mediante la combinación adecuada de las contribuciones modales, las cuales se caracterizan por la máxima respuesta de cada modo. Estas contribuciones modales se ven influenciadas por un factor conocido como coeficiente de participación modal, el cual indica la importancia relativa de cada modo en la respuesta global de la estructura.

En la Figura 5 se observa los modos de vibración de un edificio.


Figura 5 *Modos de vibración de un edificio con diafragmas rígidos*

Nota. Muñoz (2020)

La aplicación de este método según la norma E.030 requiere la consideración de los modos de vibración en la cual se demuestre que la suma de masas efectivas sea, como mínimo, el 90% de la masa total, con un mínimo de 3 primeros modos para cada dirección a analizar. La Figura 6 diagrama el método de análisis dinámico y la obtención de la respuesta espectral por medio de la combinación modal.

Figura 6Respuesta espectral por combinación modal

Nota. Muñoz (2020)

Según Villalba (2015):

El Método Modal Espectral (MME) es un método dinámico aproximado, en el que la respuesta de una estructura se obtiene mediante la combinación adecuada de contribuciones modales, las cuales están caracterizadas por la máxima respuesta de cada modo afectadas por un factor denominado coeficiente de participación modal, el cual indica la extensión en que cada modo contribuye a la respuesta total de la estructura. Se admite que la estructura funciona en el campo elástico lineal, y para la excitación sísmica se utiliza la aplicación de acelerogramas reales o sintéticos.

Tal como se indica en Amaguaña & Yumbay (2016):

El análisis modal espectral obtiene la respuesta máxima de la estructura por medio de la separación del sistema en sus formas o modos de vibrar, combinando las respuestas máximas de cada uno de sus modos mediante la aplicación de un

espectro de respuesta; es decir, obtiene las respuestas máximas mediante una superposición de todos los modos.

2.3. Definición de términos básicos

Sistema estructural: conjunto funcional de miembros estructurales, tales como vigas, columnas, placas, arriostres, muros, etc, que estan expuestos a distintas cargas y fuerzas externas.

Diafragma: losa o cubierta ubicada entre los diferentes niveles encargada de distribuir las fuerzas a cada componente estructural tales como vigas, columnas, placas.

Carga: fuerza que se ejerce sobre un elemento estructural puede ser viva, como el peso humano, tabiques móviles, o carga muerta como el peso propio de cada material, peso de muebles fijos, los cuales dependen del tipo de estructura, o natural como la fuerza del sismo o del viento.

Aisladores sísmicos: sistema de disipación de energía que busca impedir que el movimiento de la tierra provocado por un sismo sea transferido a la estructura.

Amortiguador de masa sintonizada: Dispositivo masa-resorte-amortiguador que al acoplarse a un sistema estructural puede reducir su respuesta dinámica por medio de la disipación de energía.

Amortiguador de masa sintonizada traslacional: AMS compuesto por una masa sobre rodamientos o aisladores que permiten su traslado para disipar la energía.

Amortiguador de masa sintonizada tipo péndulo: AMS compuesto por una masa sujeta por un cable anclado a la estructura.

Frecuencia natural: frecuencia en la que vibra una estructura determinada por la forma, rigidez y masa de la misma expresada en hertz.

Resonancia: fenómeno en el cual la resonancia natural se acerca a la frecuencia en la que se excita una fuerza periódica externa.

Análisis modal: Análisis que permite determinar las frecuencias y modos de una estructura.

Análisis modal espectral: Análisis dinámico en el que se puede obtener los parámetros de respuesta de una estructura (desplazamientos, aceleraciones, esfuerzos, etc.) mediante las contribuciones modales.

CAPÍTULO III: SISTEMA DE HIPÓTESIS

3.1. Hipótesis o Supuestos Teóricos

3.1.1. Hipótesis principal

Al realizar el análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo se mejora la respuesta dinámica cuando se implementa el AMS hasta en un 15%.

3.1.2. Hipótesis secundarias

- a) Conociendo las características de masa, rigidez, frecuencia y amortiguamiento del edificio se diseñará el amortiguador de masa sintonizada
- b) Al aumentar la razón de masa hasta un 5% y sintonizar las frecuencias del edificio y el AMS se reduciría los desplazamientos y derivas del edificio hasta en un 25%.
- c) Al aumentar la razón de masa hasta un 5% y sintonizar las frecuencias del edificio y el AMS se reduciría las aceleraciones y cortantes basales del edificio hasta en un 25%.

3.2. Variables

Variable Independiente

Pérez (2007) indica que la variable Independiente (VI) es la razón, o explicación, por la que sucede otro fenómeno. En el ensayo es la variable que tiene la capacidad de controlar el investigador y tiende a denominar como tratamiento (p. 171).

La variable independiente es la implementación y diseño de amortiguador de masa sintonizada.

Variable Dependiente

Cauas (2015) menciona sobre la variable dependente que reciben esta denominación las variables a exponer, o sea, el objetivo principal del proyecto, que se encarga de explicar en base de otros elementos (p. 3).

La variable dependiente es el comportamiento dinámico de un edificio multifamiliar de 22 pisos en Surquillo.

3.3. Operacionalización de Variables

En cada estudio se establecen dos niveles interrelacionados: el nivel conceptual y el nivel empírico u operacional. En el nivel conceptual se identifican y describen las características relevantes para la investigación, así como se plantean las interacciones entre ellas. Por otro lado, en el nivel operacional, se busca analizar y establecer las conexiones o correlaciones entre las variables, tal y como se

presentan en los datos observados. Además, se verifica si estas relaciones concuerdan con el modelo conceptual propuesto. (Cauas, 2015)

En la Tabla 3 se muestran las variables junto con su definición conceptual, indicadores e instrumentos de medición.

Tabla 3 *Operacionalización de variables*

Variables	Definición conceptual	Indicadores	Instrumento			
Variable Independiente						
Amortiguador de	Espinoza et al., (2018): El AMS se compone de una masa secundaria conectada a	Razón de Masa	Simulación Virtual en ETABS			
Masa Sintonizada	la estructura con un amortiguador y un mecanismo elástico.	Frecuencia del AMS	Norma E030 Diseño Sismorresistente			
	Variable Depen	diente				
Comportamiento dinámico de un	Rochel (2012) indica que el espectro de respuesta nos muestra la respuesta máxima para todo un conjunto de sistemas de un grado de libertad, expuesto a un solo mismo. Para cada periodo se obtiene el historial de desplazamientos y solo se elige la máxima respuesta absoluta.	Aceleración	Simulación Virtual en ETABS			
edificio multifamiliar de 22 pisos		Desplazamiento	Norma E030 Diseño Sismorresistente			

Nota. Elaboración propia

CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN

4.1. Tipo y nivel

4.1.1. Tipo

La investigación aplicada está en la búsqueda de comprender, intervenir, crear y cambiar un problema real y/o actual, teniendo mayor interés en la aplicación directa sobre esta antes que desarrollar un conocimiento con valor universal. Por otro lado, una investigación cuantitativa plantea responder las incognitas de la investigación y probar los supuestos por medio de recolectar y análizar los datos, la medición numérica, conteo y estadística (Borja, 2012, pp. 10-12).

La presente investigación fue de tipo aplicada con enfoque cuantitativo, pues buscó en los AMS una solución aplicable para optimizar la respuesta dinámica de edificaciones esbeltas frente a solicitaciones sísmicas, recolectando y analizando datos cuantitativos como desplazamientos, derivas y aceleraciones para determinar su eficacia.

4.1.2. Nivel

La investigación descriptiva pretende caracterizar ciertos aspesctos del objeto estudiado (Borja, 2012, p. 13)

La presente investigación fue de nivel descriptivo.

4.2. Diseño de investigación

Las investigaciones de tipo no experimental no determinan ni comprueban vínculos causales directos entre 2 variables o entre 2 elementos y que la investigación transversal muestra el fenómeno de estudio en un instante específico del tiempo (Borja, 2012, pp. 13-14).

La presente investigación fue no experimental con diseño transversal.

4.3. Población y muestra

4.3.1. Población

Lepkowski (como citado en Hernandez et al., 2014) señala que una población es el grupo de todos los casos que coinciden con una conjunto de requisitos y/o especificaciones.

La población de estudio de la presente tesis fueron todas las edificaciones multifamiliares de concreto armado de gran altura ubicadas en el distrito de Surquillo.

4.3.2. Muestra

Hernandez et al. (2014) indica que la muestra son los datos a recolectar de un subgrupo de la población de interés.

La muestra seleccionada fue la edificación multifamiliar de concreto armado de 22 niveles ubicado en el distrito de Surquillo. En la selección se aplicó un muestreo no probabilístico por conveniencia, donde se optó por encontrar un edificio destinado a vivienda, con derivas de entrepiso cercanas al límite impuesto por la normativa que permitiera la optimización del sistema. El edificio es irregular en planta y presenta elementos estrucuturales como placas y columnas muy diversos en dimensiones.

4.4. Técnicas e instrumentos de recolección de datos

4.4.1. Técnicas de recolección de datos

- a) Técnicas
- -Observación directa: Se realizará la medición de datos por medio de la observación directa de resultados en el software ETABS.
- -Análisis documental: Se hará una revisión del expediente técnico para el modelado del edificio y de la bibliografía disponible para el correcto diseño del AMS.
 - b) Instrumentos
- -Norma técnica peruana E.020 Cargas
- -Norma técnica peruana E.030 Diseño Sismorresistente
- -Software ETABS V.19
- -Excel versión 2021
- -AutoCAD versión 2021

4.4.2. Criterios de validez y confiabilidad de los instrumentos

ETABS es uno de los softwares más empleados para cálculos y diseños estructurales que a lo largo de cada una de sus versiones se ha ido afinando y mejorando para conseguir resultados que reflejen el desempeño real de las estructuras. Las normas empleadas en en la presente investigación, en sus ultimas versiones, también han sido revisadas exhaustivamente por un grupo de profesionales capacitados, lo que garantiza la veracidad de los datos.

4.4.3. Procedimientos para la recolección de datos

En la Figura 7 se muestra el procedimiento de diseño del amortiguador. La Figura 8 muestra el procedimiento de comparación de respuesta dinámica sin y con AMS. En la Figura 9 se observa el procedimiento de comparación de respuesta para varias razones de masa.

Figura 7Procedimiento de diseño del amortiguador

Figura 8

Procedimiento de comparación de respuesta dinámica sin y con AMS

Nota. Elaboración propia

Figura 9Procedimiento de comparación de respuesta para varias razones de masa

Nota. Elaboración propia

4.5. Técnicas de procesamiento y análisis de la información

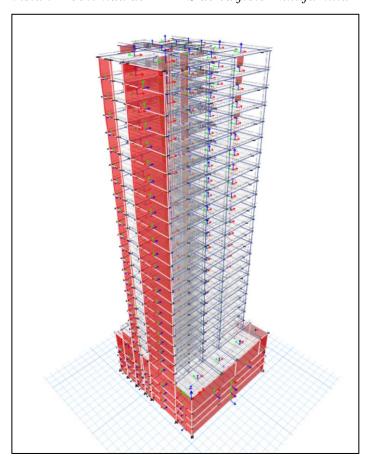
El proceso para desarrollar el proyecto tendrá como base la utilización del programa de cálculo estructural ETABS V.19, que permitirá el modelado por elementos finitos de la edificiación, el AMS, su análisis y resultados de respuesta dinámica. Para una mejor visualización y evaluación de los resultados, estos serán graficados y tabulados en EXCEL y GraphPad.

CAPÍTULO V: ANÁLISIS SÍSMICO

5.1. Datos generales

Para el presente trabajo de investigación se hizo uso de la información correspondiente al edificio estructural multifamiliar de 22 pisos ubicado en la av. Angamos en el distrito de Surquillo, Lima, Perú.

Dicho proyecto está compuesto por 22 pisos destinados a las viviendas multifamiliares, un semisótano y 3 sótanos destinados al uso de estacionamientos. Se pudo identificar una altura aproximada de entrepiso de 2.10 metros, dando como resultado una altura total de 79.95 metros.


Según el estudio de mecánica de suelos, esta edificación se encuentra apoyada sobre un suelo de grava pobremente graduada con limo (GP/ GP-GM) y la cota de fundación se ubica a una profundidad de 1 metro como mínimo por debajo del nivel del piso terminado del tercer sótano. Los elementos de cimentación son zapatas aisladas y corridas de concreto armado. La capacidad portante de dicho terreno se estimó en 5.20 kg/cm².

En cuanto a la conformación estructural, está compuesta por placas (muros de corte) y pórticos, todo de concreto armado. Los techos son en su mayoría losas aligeradas de 0.20 metros de espesor, sin embargo, notamos la presencia de algunas losas macizas.

5.2. Modelo Estructural en Etabs

Para el modelado de la edificación en el software Etabs se hizo uso de los planos de estructuras siguiendo las especificaciones técnicas del proyecto, así como la distribución de elementos estructurales la misma. Para ello primero tuvimos que modelar los elementos estructurales, colocando las especificaciones de los materiales, para luego proceder calcular y colocar las cargas a cada elemento de la estructura. Para finalizar, se hizo el analisis sismorresistente con la norma E0.30, estos resultados fueron introducidos en el ETABS y así obtener el analisis dinámico modal espectral y la deriva de entrepiso de la estructura trabajada. Todo este proceso se encuentra descrito a continuación. La Figura 10 muestra el modelo 3D desarrollado en el software ETABS.

Figura 10Vista 3D obtenida de ETABS de edificio multifamiliar

La resistencia de los materiales que han sido considerados según los planos de estructuras fueron los mostrados en la Tabla 4:

Tabla 4Resistencia a la compresión del concreto en elementos estructurales

Elemento	Resistencia a la compresión del concreto f'c (kg/cm2)			
Muros de contención	280 kg/cm2			
Placas	280 kg/cm2	210 kg/cm2		
Columnas	420 kg/cm2	350 kg/cm2	280 kg/cm2	210 kg/cm2
Vigas	210 kg/cm2			
Losas	210 kg/cm2			

Nota. Elaboración propia

El acero utilizado fue de grado 60 con una resistencia a la fluencia de fy=4200 kg/cm² Dichas características mencionadas fueron las que primero se colocaron en el ETABS para poder continuar con la definición de cada elemento estructural. Se detalla el ingreso de datos en el software en la Figura 11.

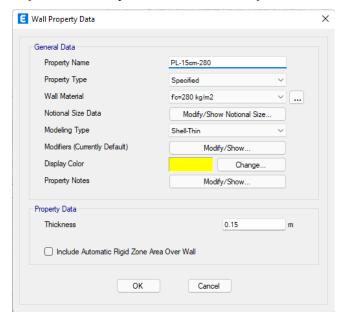
Figura 11Definición de concreto f'c=210 kg/cm2 en software ETABS.

5.2.1. Modelado de elementos

5.2.1.1. Columnas

Para las columnas, como se encontró diferentes secciones en los planos de estructuras, se procedió a definir cada una por separado y se le asigno la resistencia a la compresión del concreto correspondiente definida anteriormente tal como se muestra en la Figura 11. En la Figura 12 se muestra la definición de la columna C-1 a modo de ejemplo.

Figura 12Definición de columna C-1 del sótano 3 en software ETABS

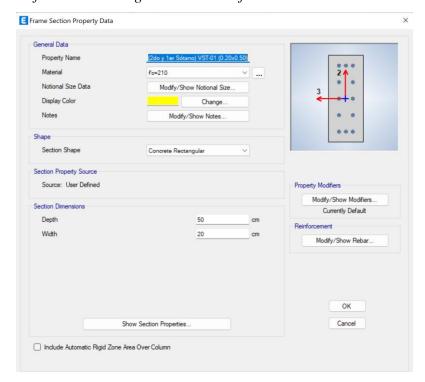


Se realizó el mismo procedimiento para definir cada una de las secciones de columnas del proyecto.

5.2.1.2. Placas

A continuación, se definieron las placas por espesor y por resistencia a la compresión debido a que hay secciones irregulares y diferentes resistencias en los diferentes niveles. Se visualiza dicha definición en la Figura 13.

Figura 13Definición de la placa PL-15 cm en software ETABS.


Nota. Elaboración propia

Se realizó el mismo procedimiento para definir cada una de las placas que conforman el proyecto.

5.2.1.3. Vigas

De la misma manera, se definieron las vigas según la sección y la resistencia a la compresión especificada en los planos de estructuras, así mismo se colocó la cantidad de acero que lo conformaba cada una de ellas. Se muestra la deficinición de la viga VST-01 a modo de ejemplo en la Figura 14.

Figura 14Definición de la viga VST-01 en software ETABS

Nota. Elaboración propia

Se realizó el mismo procedimiento para definir y modelar todas las vigas del proyecto.

5.2.1.4. Losas aligeradas y macizas

Según los planos estructurales, las losas aligeradas son unidireccionales de 20 cm de espesor y las losas macizas son de 15 cm y 20 cm, ambos con una resistencia de concreto de 200 kg/cm² y 250 kg/cm² según se especifique en cada piso. En el software ETABS fueron definidos como Shell-thin. La Figura 15 muestra la definición de una losa aligerada.

Figura 15Definición de losa aligerada 20cm de espesor.

eneral Data				
Property Name	LA e=0.20m			
Slab Material	fc=210		~	
Notional Size Data	Modify/Shor	w Notional Si	ze	
Modeling Type	Shell-Thin		~	
Modifiers (Currently Default)	Modif	y/Show		
Display Color		Change		
			Modify/Show	
Property Notes	Modif	y/Show		
roperty Data		y/Show	~	
	Modif Ribbed	y/Show	~	cm
roperty Data			~	cm
roperty Data Type Overall Depth		20	~	
roperty Data Type Overall Depth Slab Thickness		20 5	~	cm

De la misma manera de definieron el resto de losas del proyecto.

5.2.2. Carga viva y muerta

Para la definición de las cargas muertas y vivas se hizo uso de la Norma Peruana de Cargas E.020 donde se detalla las cargas mínimas a considerar para el diseño estructural en condición de servicio. Para el presente proyecto se tomaron en cuenta las cargas descritas a continuación.

5.2.2.1. Carga Muerta

Al ser un edificio multifamiliar, las cargas muertas que se tomaron en cuenta fueron las siguientes:

- Peso propio de elementos estructurales
- Tabiques
- Piso terminado
- Servicio (ductos y tuberías colgados en los techos de los sótanos)

Los valores empleados se muestran en la Tabla 5.

Tabla 5

Cargas muertas de diseño consideradas en el modelo.

Elemento	Carga muerta (kg/m2)
Ladrillo de Techo	70.2 (kg/m2)
Tabiqueria	150 (kg/m2)
Piso terminado	100 (kg/m2)

Nota. Elaboración propia

5.2.2.2. Carga Viva

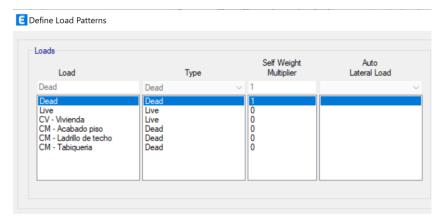
Para el caso de la carga viva se tomaron en cuenta los siguientes elementos según la Norma E.020. Sobrecarga viviendas

- Corredores y escaleras
- Estacionamientos

En la Tabla 6 se detallan los valores de la carga considerada.

Tabla 6

Cargas vivas de diseño consideradas en el modelo.


Elemento	Carga Viva (kg/m2)
Viviendas	200 kg/m2
Corredores y escaleras	200 kg/m2

Nota. Elaboración propia

En la Figura 16 se detallan las cargas descritas anteriormente ya definidas en el software ETABS.

Figura 16

Definición de cargas vivas y muertas en el modelo de ETABS

Nota. Elaboración propia

5.3. Diseño Sismorresistente

Para el diseño Sismorresistente se hizo uso de la Norma Técnica Peruana E.030 donde se establecen los parámetros mínimos necesarios a considerar al diseñar una edificación en el Perú.

5.3.1. Zonificación

La norma divide al territorio peruano en 4 zonas basada en la distribución espacial de la sismicidad, las características que presentan los movimientos sísmicos y como se atenúan de la distancia epicentral. A cada área se le ha asignado un factor que se interpreta como la aceleración máxima horizontal en suelo rígido o como una fracción de aceleración de la gravedad. (Sencico, 2020, p.13)

Como la estructura está ubicada en la ciudad de Lima Metropolitana a este se le asigna la zona 4 con valor de Z=0.45. La Tabla 7 muestra los factores de zona definidos en la norma E.030.

Tabla 7Factores de zona Z

Factores de Zona "Z"		
Zona	Z	
4	0.45	
3	0.35	
2	0.25	
1	0.10	

Nota. Sencico (2020) Norma E.030 Diseño Sismorresistente

5.3.2. Perfiles de suelo y parámetros de sitio

Para esta clasificación la norma considera la velocidad promedio de propagación de las ondas de corte, para suelos granulares considera el promedio ponderado del Ensayo Estándar de penetración y para suelos cohesivos considera la resistencia al corte en condición no drenada. Se clasifica en:

- Perfil tipo S₀: Roca Dura
- Perfil tipo S₁: Roca o suelos muy rigidos
- Perfil tipo S₂: Suelos intermedios
- Perfil tipo S₃: Suelos Blandos
- Perfil tipo S₄: Condiciones excepcionales

Para este proyecto se ha considerado que es suelo debajo de la cimentación es de tipo $Perfil S_1$ roca o suelo muy rígido.

Con la zonificación y el tipo de suelo se puede obtener el factor de suelo S con la tabla obtenida de la norma E.030, para una zona 4 y tipo de suelo S1 le corresponde un valor de S=1. En la Tabla 8 se visualiza el factor de suelo según el tipo de suelo y zona.

Tabla 8Factor de suelo S

Factor de Suelo S				
$Suelo$ S_0 S_1 S_2 S_3				
Z_4	0.80	1.00	1.05	1.10
\mathbb{Z}_3	0.80	1.00	1.15	1.20
\mathbf{Z}_2	0.80	1.00	1.20	1.40
Z_1	0.80	1.00	1.60	2.00

Nota. Sencico (2020) Norma E.030 Diseño Sismorresistente

Asi mismo con el perfil del suelo se puede obtener los valores de los periodos "T_p" y "T_L" de la Tabla 9 obtenida de la norma E.030.

Tabla 9

Periodos "Tp" y "TL"

Periodos "Tp" y "TL"					
	Perfil del suelo				
_	S0 S1 S2 S3				
Tp	Tp 0.30 0.40 0.60 1.00				
ΤĹ	3.00	2.50	2.00	1.60	

Nota. Sencico (2020) Norma E.030 Diseño Sismorresistente

Obteniendo como valores $T_p = 0.4$ y $T_L = 2.5$.

5.3.3. Factor de amplificación sísmica

Con los parámetros de sitio obtenidos (S, T_p y T_L) podemos obtener el factor de amplificación sismica (C) con las siguientes expresiones:

$$\begin{split} T < T_P & C = 2.5 \\ T_P < T < T_L & C = 2.5 \text{ x } (\frac{T_P}{T}) \\ T > T_L & C = 2.5 \text{ x } (\frac{T_P \text{ x } T_L}{T}) \end{split}$$

Donde T es el periodo fundamental, dicho valor lo obtuvimos del software ETABS para las direcciones X e Y:

- Periodo fundamental en X(Tx)=1.915
- Periodo fundamental en Y $(T_v)=2.316$

Tomando en cuenta las ecuaciones descritas previamente se procede a calcular el factor de amplificación sísmica para ambas direcciones.

• Dirección X: C=2.5 x $(\frac{0.4}{1.915}) = 0.522$

• Dirección Y: C=2.5 x $(\frac{0.4}{2.316}) = 0.432$

5.3.4. Categoría de las edificaciones y factor de uso U

Siguiendo con el capítulo III de la norma peruana E.030 de diseño Sismorresistente corresponde determinar la categoría de la estructura según los criterios propuestos. Como ya se había mencionado anteriormente, el proyecto utilizado es una edificación multifamiliar la cual pertenece a la categoría "C" de edificaciones comunes por lo tanto le corresponde un factor de uso U=1.

5.3.5. Coeficiente básico de reducción de las fuerzas sísmicas

Según la norma peruana E.030 de diseño Sismorresistente, las estructuras de concreto armado se dividen en 4 categorías y las estructuras de acero se dividen en 6 categorías. Siguiendo este esquema se identifica la categoría de sistema estructural para asi obtener el coeficiente básico de reducción R₀ según la Tabla 10 obtenida de la norma E.030.

Tabla 10Sistemas estructurales

Sistemas Estructurales					
Sistema Estructural	Coeficiente Básico de Reducción R ₀				
Acero					
Pórticos Especiales Resistentes a Momentos (SMF)	8				
Pórticos Intermedios Resistentes a Momentos (IMF)	5				
Pórticos Ordinarios Resistentes a Momentos (OMF)	4				
Pórticos Especiales Concéntricamente Arriostrados (SCBF)	7				
Pórticos Ordinarios Concéntricamente Arriostrados (OCBF)	4				
Pórticos Excéntricamente Arriostrados (EBF)	8				
Concreto Armado					
Pórticos	8				
Dual	7				
De muro estructurales	6				
Muros de ductilidad limitada	4				
Albañileria Armada o Confinada	3				
Madera	7				

Nota. Sencico (2020) Norma E.030 Diseño Sismorresistente

De acuerdo a la tabla presentada se considera que el proyecto multifamiliar es de sistema "De muros estructurales" por lo tanto le corresponde un valor de reducción R_0 =6.

5.3.6. Regularidad Estructural

Las estructuras se dividen en regulares e irregulares, para determinar cuál de los dos casos corresponde a nuestro proyecto fue necesario calcular los factores de irregularidad en altura I_a y en planta I_p .

5.3.6.1. Irregularidad en altura Ia

Piso Blando:

Para determinar la existencia de dicha irregularidad fue necesario calcular la rigidez y aplicar las siguientes formulas descritas en la norma peruana E.030:

 $Rigidez_i < 0.70 \ x \ Rigidez_{i+1}$

$$Rigidez_{i} < 0.80 \ x \ \tfrac{\textit{Rigidez}_{i+1} + \textit{Rigidez}_{i+2} + \textit{Rigidez}_{i+3}}{3}$$

A continuación, en la Tabla 11, se presentan los cálculos realizados para la verificación de irregularidad en altura en dirección X-X:

 Tabla 11

 Determinación de irregularidad de piso blando en dirección X-X

Nivel	Rigidez de entrepiso Kix	Ki/Ki+1	3Ki/(Ki+1+Ki+2+Ki+3)	¿Tiene irregularidad?
	ton/mm			
Nivel 22	26.49			
Nivel 21	38.96	18.54		FALSO
Nivel 20	45.00	27.27		FALSO
Nivel 19	50.89	31.50	29.45	FALSO
Nivel 18	55.54	35.62	35.96	FALSO
Nivel 17	57.68	38.88	40.38	FALSO
Nivel 16	58.44	40.38	43.76	FALSO
Nivel 15	59.24	40.91	45.78	FALSO
Nivel 14	60.18	41.47	46.76	FALSO
Nivel 13	61.41	42.13	47.43	FALSO
Nivel 12	63.26	42.98	48.22	FALSO
Nivel 11	65.82	44.28	49.29	FALSO
Nivel 10	69.12	46.07	50.79	FALSO
Nivel 9	73.07	48.38	52.85	FALSO
Nivel 8	77.98	51.15	55.47	FALSO
Nivel 7	83.52	54.58	58.71	FALSO
Nivel 6	90.43	58.47	62.55	FALSO
Nivel 5	99.40	63.30	67.18	FALSO
Nivel 4	111.78	69.58	72.89	FALSO
Nivel 3	130.49	78.25	80.43	FALSO
Nivel 2	164.01	91.34	91.11	FALSO
Nivel 1	227.35	114.80	108.34	FALSO

Nota. Elaboración propia

A continuación, en la Tabla 12, se presentan los cálculos realizados para la verificación de irregularidad en altura en dirección Y-Y.

Tabla 12Determinación de irregularidad de piso blando en dirección Y-Y

Nivel	Rigidez de entrepiso Kiy	Ki/Ki+1	3Ki/(Ki+1+Ki+2+Ki+3)	¿Tiene irregularidad?
	ton/mm			
Nivel 22	23.57			_
Nivel 21	32.61	16.50		FALSO
Nivel 20	37.16	22.83		FALSO
Nivel 19	42.21	26.01	24.89	FALSO
Nivel 18	45.86	29.55	29.86	FALSO
Nivel 17	47.11	32.11	33.40	FALSO
Nivel 16	47.14	32.98	36.05	FALSO
Nivel 15	47.82	33.00	37.36	FALSO
Nivel 14	49.08	33.48	37.89	FALSO
Nivel 13	50.40	34.35	38.41	FALSO
Nivel 12	52.00	35.28	39.28	FALSO
Nivel 11	53.96	36.40	40.39	FALSO
Nivel 10	56.18	37.77	41.69	FALSO
Nivel 9	58.75	39.33	43.24	FALSO
Nivel 8	61.96	41.13	45.04	FALSO
Nivel 7	65.41	43.37	47.17	FALSO
Nivel 6	70.06	45.79	49.63	FALSO
Nivel 5	76.37	49.04	52.65	FALSO
Nivel 4	85.43	53.46	56.49	FALSO
Nivel 3	99.38	59.80	61.83	FALSO
Nivel 2	124.52	69.56	69.65	FALSO
Nivel 1	181.70	87.16	82.49	FALSO

Por lo tanto, se concluye que no presenta irregularidad de piso blando.

• Piso Débil:

Para determinar la existencia de dicha irregularidad fue necesario determinar si la resistencia de entrepiso de fuerzas cortantes es menor al 80% de la resistencia del entrepiso inmediato superior.

A continuación, en la Tabla 13, se presentan los cálculos realizados para la verificación de irregularidad en altura de piso débil en dirección X-X:

Tabla 13Determinación de irregularidad de piso débil en dirección X-X

Nivel	Fuerza cortante Vx_i	$0.8Vx_i + 1$	¿Tiene irregularidad?
	Ton		
Nivel 22	61.62		
Nivel 21	95.31	49.30	FALSO
Nivel 20	116.29	76.25	FALSO
Nivel 19	138.73	93.03	FALSO
Nivel 18	158.62	110.98	FALSO
Nivel 17	171.03	126.89	FALSO
Nivel 16	178.19	136.82	FALSO
Nivel 15	183.82	142.55	FALSO
Nivel 14	189.23	147.06	FALSO
Nivel 13	194.89	151.38	FALSO
Nivel 12	201.82	155.91	FALSO
Nivel 11	210.50	161.46	FALSO
Nivel 10	220.66	168.40	FALSO
Nivel 9	231.72	176.53	FALSO
Nivel 8	243.29	185.38	FALSO
Nivel 7	255.76	194.63	FALSO
Nivel 6	269.46	204.61	FALSO
Nivel 5	284.09	215.56	FALSO
Nivel 4	299.12	227.27	FALSO
Nivel 3	314.05	239.29	FALSO
Nivel 2	328.40	251.24	FALSO
Nivel 1	343.28	262.72	FALSO

En la Tabla 14 se presentan los cálculos realizados para la verificación de irregularidad en altura de piso débil en dirección Y-Y:

Tabla 14Determinación de irregularidad de piso débil en dirección Y-Y:

Nivel	Fuerza cortante Vy _i	$0.8Vx_i + 1$	¿Tiene irregularidad?
	Ton		
Nivel 22	49.96		
Nivel 21	74.51	39.97	FALSO
Nivel 20	91.34	59.61	FALSO
Nivel 19	111.00	73.07	FALSO
Nivel 18	127.79	88.80	FALSO
Nivel 17	137.56	102.23	FALSO

Nivel 16	142.63	110.05	FALSO
Nivel 15	148.16	114.11	FALSO
Nivel 14	155.37	118.53	FALSO
Nivel 13	162.53	124.29	FALSO
Nivel 12	170.15	130.03	FALSO
Nivel 11	178.48	136.12	FALSO
Nivel 10	186.97	142.79	FALSO
Nivel 9	195.52	149.58	FALSO
Nivel 8	203.70	156.41	FALSO
Nivel 7	212.56	162.96	FALSO
Nivel 6	223.47	170.04	FALSO
Nivel 5	236.11	178.77	FALSO
Nivel 4	250.32	188.89	FALSO
Nivel 3	265.67	200.25	FALSO
Nivel 2	280.89	212.54	FALSO
Nivel 1	297.02	224.71	FALSO

Por lo tanto, se concluye que no presenta irregularidad de piso débil.

• Irregularidad Extrema de rigidez – Piso blando y Piso Débil

Debido a que según los cálculos anteriores no se ha encontrado regularidad de piso blando ni de piso débil se puede concluir que la estructura no presenta irregularidad extrema de rigidez de piso blando y de piso débil.

• Irregularidad de Masa o Peso:

Existe dicha irregularidad cuando el peso de un nivel es 1.5 veces mayor que el peso del nivel adyacente. A continuación se muestran los cálculos:

• Irregularidad Geométrica Vertical

Existe cuando, en cualquiera de las direcciones de análisis, la longitud horizontal máxima es mayor a 1.3 veces la longitud horizontal del piso adyacente. Se muestran los cálculos en la Tabla 15:

 Tabla 15

 Cálculo de irregularidad geométrica vertical en dirección X-X

Nivel	Longitud bxi	Altura bx _i /bx _i +1	¿Tiene irregularidad?
	m		
Nivel 1	22.51	1.00	NO
Nivel 2	22.51	1.00	NO
Nivel 3	22.51	1.00	NO
Nivel 4	22.51	1.00	NO
Nivel 5	22.51	1.00	NO

Nivel 6	22.51	1.00	NO
Nivel 7	22.51	1.00	NO
Nivel 8	22.51	1.00	NO
Nivel 9	22.51	1.00	NO
Nivel 10	22.51	1.00	NO
Nivel 11	22.51	1.00	NO
Nivel 12	22.51	1.00	NO
Nivel 13	22.51	1.00	NO
Nivel 14	22.51	1.00	NO
Nivel 15	22.51	1.00	NO
Nivel 16	22.46	1.00	NO
Nivel 17	22.46	1.00	NO
Nivel 18	22.46	1.00	NO
Nivel 19	22.46	1.00	NO
Nivel 20	22.46	1.00	NO
Nivel 21	22.46	1.00	NO
Nivel 22	22.46		NO
A7 / T71 1	• ,		

En la dirección Y-Y obtuvimos los resultados descritos en la Tabla 16.

Tabla 16Cálculo de irregularidad geométrica vertical en dirección Y-Y

Nivel	Longitud byi	Altura by _i /by _i +1	¿Tiene irregularidad?
	m		
Nivel 1	21.25	1.00	NO
Nivel 2	21.25	1.00	NO
Nivel 3	21.25	1.00	NO
Nivel 4	21.25	1.00	NO
Nivel 5	21.25	1.00	NO
Nivel 6	21.25	1.00	NO
Nivel 7	21.25	1.00	NO
Nivel 8	21.25	1.00	NO
Nivel 9	21.25	1.00	NO
Nivel 10	21.25	1.00	NO
Nivel 11	21.25	1.00	NO
Nivel 12	21.25	1.00	NO
Nivel 13	21.25	1.00	NO
Nivel 14	21.25	1.00	NO
Nivel 15	21.25	1.00	NO
Nivel 16	21.20	1.00	NO
Nivel 17	21.20	1.00	NO

Nivel 18	21.20	1.00	NO
Nivel 19	21.20	1.00	NO
Nivel 20	21.20	1.00	NO
Nivel 21	21.20	1.00	NO
Nivel 22	21.20		NO

Se concluye que la edificación no presenta irregularidad geométrica vertical.

• Discontinuidad en los sistemas resistentes:

Dicha irregularidad se considera existente cuando algún elemento estructural que resista más del 10% de la fuerza cortante tenga un desalineamiento vertical o desplazamiento del eje mayor al 25% de la dimensión del elemento.

Para el caso estudiado en el presente proyecto de investigación no se ha presentado dicho caso de irregularidad.

Después de evaluar cada caso de irregularidad se concluye que no se han encontrado irregularidades en altura obteniendo un valor de I_a=1.

5.3.6.2. Irregularidad en planta Ip

Irregularidad Torsional

Para determinar la existencia de irregularidad torsional en el presente proyecto es necesario utilizar la siguiente formula:

$$\Delta_{\text{max}} > 1.3 \text{ x } \Delta_{\text{prom}}$$

Sin embargo se debe verificar si el desplazamiento relativo es mayor que 50% del desplazamiento admisible. Según la norma E.030 el desplazamiento admisible para concreto armado es de 0.007h, siendo la altura de entrepiso de 2.70m se tiene un máximo admisible de 0.007*2.70 = 0.0189. El 50% del valor admisible seria 0.0035 y se tiene como máximo desplazamiento relativo en X es Δ_{max} =0.0053, en Y es Δ_{max} =0.0068. Como el desplazamiento máximo relativo excede el 50% del admisible si se aplica la formula descrita.

Siendo el desplazamiento promedio la semi suma de los desplazamientos de los pisos extremos $\Delta_{prom} = (0.0045)$. Se tiene que el $\Delta_{max} = 0.0068 > 1.3 \text{ x} \ 0.0045 = 0.0059$. Se concluye existe excentricidad torsional teniendo como resultado un valor de $I_p = 0.75$.

• Irregularidad Torsional extrema

Para que existe irregularidad torsional extrema el valor de Δ_{max} debe ser mayor en 1.5 veces el valor del desplazamiento promedio $\Delta_{prom.}$ Como dicho caso no cumple con la situación del proyecto se descarta que exista irregularidad torsional extrema.

Como se debe tomar el menor valor obtenido de la tabla de la norma E.030, se considera que I_p=0.75. Por tanto, el coeficiente de reducción de las fuerzas sísmicas R se obtendría con la siguiente formula.

$$R = R_0 \times I_a \times I_p$$

$$R = 6 \times 1 \times 0.75 = 4.5$$

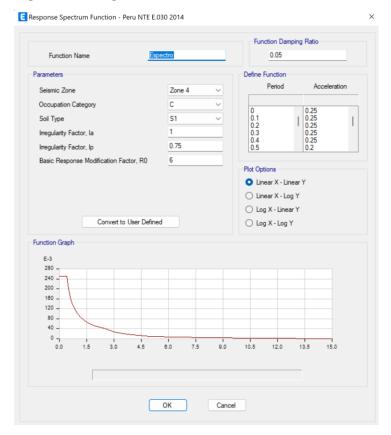
A continuación, en la Tabla 17, se detalla a manera de resumen todos los factores obtenidos para poder realizar el análisis sísmico.

Tabla 17Factores para análisis sísmico.

Tipo	Factor
Z	0.45
U	1
S	1
TP	0.4
TL	2.5
R	4.5

Nota. Elaboración propia

5.4. Análisis Dinámico Modal Espectral


5.4.1. Espectro de Respuesta

Para definir el espectro de respuesta se introdujo los datos obtenidos previamente en el software ETABS. Lo que indica la norma es que se utilice un espectro inelástico de pseudo-aceleraciones para ambas direcciones horizontales (X e Y) y esta se define por la siguiente formula:

$$S_a = \frac{Z.U.C.S}{R}.g$$

El espectro de respuesta obtenido se muestra en la Figura 17.

Figura 17 *Espectro de respuesta obtenido en ETABS*

5.4.2. Deriva de entrepiso

A continuación, se muestran las derivas obtenidas por el software ETABS. Para verificar que no exceda la deriva máxima permisible, siendo esta un valor de 0.007 para concreto armado, el cual se muestra en la tabla 2 de límites para la distorsión de entrepiso de la norma peruana E.030 de diseño sismorresistente, es necesario reducir los desplazamientos laterales multiplicándolo por 0.85 x R ya que la estructura es de carácter irregular según se indica en el capítulo 5 artículo 31 de la norma peruana E.030.

En la dirección X – X obtuvimos la Deriva en X, siendo el valor máximo de 0.0053, y la Deriva en Y, siendo el valor máximo de 0.0043, lo cual corrobora que en ninguna dirección excede el valor máximo permisible de 0.007. A continuación se muestra la Tabla 18 con los resultados:

Tabla 18Deriva de entre piso según sismo en X-X

Derivas de Entre Piso por Sismo Dinámico en X-X					
Nivel	Deriva en X	Deriva x 0.85R	Deriva en Y	Deriva x 0.85R	
Nivel 22	0.0009	0.0034	0.0008	0.0030	
Nivel 21	0.0009	0.0036	0.0008	0.0032	
Nivel 20	0.0010	0.0038	0.0009	0.0034	
Nivel 19	0.0011	0.0041	0.0009	0.0036	
Nivel 18	0.0011	0.0043	0.0010	0.0038	
Nivel 17	0.0012	0.0045	0.0010	0.0039	
Nivel 16	0.0012	0.0047	0.0011	0.0040	
Nivel 15	0.0013	0.0049	0.0011	0.0041	
Nivel 14	0.0013	0.0050	0.0011	0.0042	
Nivel 13	0.0013	0.0051	0.0011	0.0042	
Nivel 12	0.0013	0.0052	0.0011	0.0043	
Nivel 11	0.0014	0.0052	0.0011	0.0043	
Nivel 10	0.0014	0.0053	0.0011	0.0043	
Nivel 9	0.0014	0.0053	0.0011	0.0043	
Nivel 8	0.0014	0.0053	0.0011	0.0043	
Nivel 7	0.0014	0.0052	0.0011	0.0043	
Nivel 6	0.0013	0.0051	0.0011	0.0043	
Nivel 5	0.0013	0.0050	0.0011	0.0042	
Nivel 4	0.0012	0.0047	0.0011	0.0040	
Nivel 3	0.0011	0.0043	0.0010	0.0037	
Nivel 2	0.0009	0.0036	0.0008	0.0032	
Nivel 1	0.0006	0.0024	0.0006	0.0021	

En la dirección Y – Y obtuvimos la Deriva en X, siendo el valor máximo de 0.0049, y la Deriva en Y, siendo el valor máximo de 0.0068, lo cual corrobora que en ninguna dirección excede el valor máximo permisible de 0.007. A continuación se muestra la Tabla 19 con los resultados:

Tabla 19Deriva de entre piso por sismo en Y-Y

	Derivas de entre piso por Sismo Dinámico en Y-Y					
Nivel	Deriva en X	Deriva x 0.85R	Deriva en Y	Deriva x 0.85R		
Nivel 22	0.0007	0.0027	0.0009	0.0036		
Nivel 21	0.0008	0.0030	0.0010	0.0039		
Nivel 20	0.0008	0.0032	0.0011	0.0043		
Nivel 19	0.0009	0.0035	0.0012	0.0048		
Nivel 18	0.0010	0.0037	0.0013	0.0051		
Nivel 17	0.0010	0.0039	0.0014	0.0055		
Nivel 16	0.0011	0.0041	0.0015	0.0057		
Nivel 15	0.0011	0.0042	0.0016	0.0059		
Nivel 14	0.0011	0.0044	0.0016	0.0061		
Nivel 13	0.0012	0.0045	0.0017	0.0063		
Nivel 12	0.0012	0.0046	0.0017	0.0065		
Nivel 11	0.0012	0.0047	0.0017	0.0066		
Nivel 10	0.0012	0.0048	0.0018	0.0067		
Nivel 9	0.0013	0.0048	0.0018	0.0068		
Nivel 8	0.0013	0.0049	0.0018	0.0068		
Nivel 7	0.0013	0.0049	0.0018	0.0068		
Nivel 6	0.0013	0.0049	0.0018	0.0067		
Nivel 5	0.0013	0.0049	0.0017	0.0066		
Nivel 4	0.0012	0.0047	0.0017	0.0064		
Nivel 3	0.0011	0.0044	0.0015	0.0059		
Nivel 2	0.0010	0.0037	0.0013	0.0051		
Nivel 1	0.0007	0.0025	0.0009	0.0034		

Como se puede apreciar en las tablas, en ambas direcciones se respeta la deriva máxima de 0.007 señalada en la norma para estructuras de concreto armado.

CAPÍTULO VI: MODELAMIENTO DEL AMORTIGUADOR DE MASA SINTONIZADA (AMS)

6.1. Parámetros del AMS

Para definir los parámetros óptimos del amortiguador de masa sintonizada (AMS) se hizo uso de las fórmulas establecidas por Den Hartog (1967) descritas en el capítulo 2. Se formularon 5 casos donde se varia la relación de masa para obtener su respectivo relación de frecuencia y relación de amortiguamiento. Para los 5 casos de estudio se decidió variar la relación de masa del 1% al 5% y el resto de los parámetros óptimos se obtuvieron con las fórmulas a partir de la relación de masa descritas a continuación.

6.1.1. Masa del AMS

Para obtener la masa del AMS se multiplico la relación de masa propuesta para cada caso por el peso de la estructura obtenida del modelo en ETABS, se obtuvo lo siguiente para el caso 1:

Peso AMS = μ * Peso de la Estructura

Peso AMS =
$$0.01 * 822.1 \frac{ton*s^2}{m} = 8.22 \frac{ton*s^2}{m}$$

Se repitió el mismo procedimiento para los 5 casos propuestos.

6.1.2. Frecuencia del AMS

Para obtener la frecuencia del AMS se despejo la fórmula de la relación de frecuencia de la estructura mediante la formula siguiente:

Frecuencia AMS = relación de frecuencia * frecuencia natural estructuraDe los parámetros óptimos se obtuvo la relación de frecuencia en base a la relación de masa (μ), como ejemplo se tiene que μ =0.01 y la fórmula es la siguiente:

Relación de frecuencia
$$f = \frac{1}{1+\mu} = \frac{1}{1+0.01} = 0.99$$

Frecuencia AMS =
$$0.99 * 0.433 = 0.429 s^{-1}$$

Se repitió el mismo procedimiento para los 5 casos propuestos.

6.1.3. Amortiguamiento del AMS

Según los parámetros óptimos, la relación de amortiguamiento se describe con la siguiente fórmula:

Relación de amortiguamiento =
$$\frac{Amortiguamiento AMS}{Frecuencia AMS* Masa AMS*2}$$

$$\xi = \frac{c_a}{\omega_a * 2\pi * m * 2}$$

Para obtener la relación de amortiguamiento se hizo uso de la fórmula de amortiguamiento optimo (ξ) descrita a continuación:

$$\xi \text{ optimo} = \sqrt{\frac{3\mu}{8(1+\mu)^3}}$$

$$\xi \text{ optimo} = \sqrt{\frac{3(0.01)}{8(1+0.01)^3}} = 0.06$$

Amortiguamiento AMS =
$$0.06 * (0.429 * 2\pi) * 8.22 * 2 = 2.671 \frac{ton}{\frac{m}{s}}$$

Se repitió el mismo procedimiento para los 5 casos propuestos.

6.1.4. Rigidez del AMS

Para obtener la rigidez del AMS se hizo uso de la fórmula mostrada a continuación:

K óptimo =
$$\frac{4\pi^2 P_{AMS}}{T^2 * g}$$

Para obtener el periodo T del ams se hizo uso de la siguiente fórmula:

$$T_{AMS} = \frac{1}{\omega_a} = \frac{1}{0.431} = 2.322 \text{ seg.}$$

K óptimo =
$$\frac{4\pi^2 * 81.22}{2.32^2 * 10}$$
 = $60.22 \frac{ton}{m}$

Se repitió el mismo procedimiento para los 5 casos propuestos.

Los resultados de los parámetros óptimos de relaciones de masa, frecuencia y amortiguamiento se resumen en el capítulo VII en la tabla 20 y los resultados obtenidos de realizar los calculos descritos para hallar los parámetros del AMS para las 5 variaciones de relación de masa se muestran en el capítulo VII en la tabla 21 de parámetros óptimos de los casos de estudio.

6.2. Modelado del AMS en ETABS

Para modelar el AMS en ETABS primero se tuvo que definir la forma representativa que iba a tomar en el software y obtener la rigidez de los links que soportan la masa central. Con estos parámetros definidos se introducen los datos en el software mostrado a continuación.

6.2.1. Definición del AMS como forma

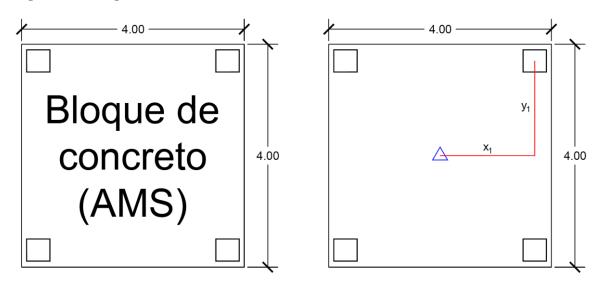
Antes de modelar el AMS en el software ETABS decidimos darle la forma de tanque elevado constituido por un bloque de concreto y 4 soportes que funcionarían como los aisladores elastoméricos que sostienen la masa.

Para definir el bloque de concreto se decidió que este iba a ser un modelo referencial, por ello, se consideró una base de 4m x 4m y la altura se despejó con el peso específico del concreto y el peso del AMS para los 5 casos. Con las medidas de la base del tanque se

pudo proceder a calcular la rigidez efectiva de todo el amortiguador, para ello se hizo uso de la siguiente formula:

K efectiva = Koptimo ($xI^2 + yI^2$)

Donde:


 xI^2 = Distancia del centro de masa (CM) del aislador elastomérico al CM del tanque en X-X.

 yI^2 = Distancia del centro de masa (CM) del aislador elastomérico al CM del tanque en Y-Y.

K efectiva =
$$60.22(2^2 + 2^2) = 481.758 \frac{ton}{m}$$

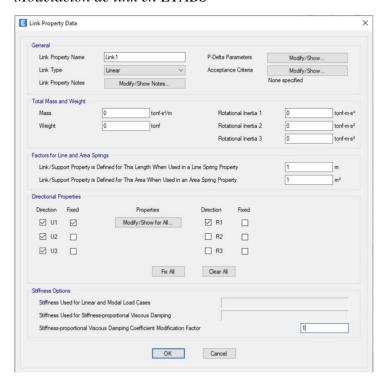
A continuación, en la Figura 18 se muestra un esquema del modelo del AMS junto con las distancias a considerar para aplicar la fórmula de rigidez efectiva con referencia, cabe mencionar que la altura del bloque de concreto varía según los 5 casos ya que la relación de masa no es la misma para todos los casos.

Figura 18 *Esquema de tanque elevado AMS*

Nota. Elaboración propia

6.2.2. Proceso de Modelado del AMS en ETABS

Lo siguiente fue modelar el bloque que representa al AMS en el software ETABS. Primero se definió la sección de concreto como una losa tipo Shell Thin con resistencia de concreto de f'c= 210 kg/cm2, este proceso se repitió en todos los casos variando el ancho de la losa. Se puede ver la definición de la losa en la Figura 19.


Figura 19Sección de concreto como slab en ETABS

Property Name	AMS		
Slab Material	fc=210	~	
Notional Size Data	Modify/Shov	v Notional Size	
Modeling Type	Shell-Thin	~	
Modifiers (Currently Default)	Modify/Show		
Display Color		Change	
Property Notes	Modif	y/Show	
roperty Data			
Туре			

Nota. Elaboración propia

Para definir los aisladores, que están distribuidos en 4 partes en la base del AMS, se colocaron como link en el ETABS según se muestra en la Figura 20 a continuación:

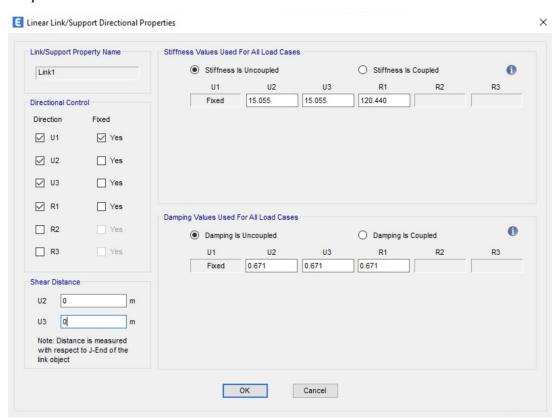
Figura 20 *Modelación de link en ETABS*

Nota. Elaboración propia

Se consideraron los grados de libertad U1, U2, U3 y R1 para dotar a los aisladores de rigidez y amortiguamiento traslacional y rotacional. Se opto por considerar la dirección

U1 (eje longitudinal del elemento link) como fija, simulando una rigidez infinita e impidiendo el movimiento vertical del amortiguador.

Como se describió al inicio del capítulo, se calculó la rigidez efectiva para cada caso, a continuación, se describirá el caso 1, para los restantes 14 casos se repite el mismo proceso.

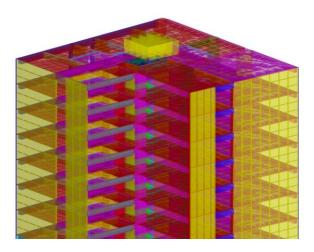

Para obtener el amortiguamiento de cada link se dividió el amortiguamiento del AMS sobre 4, se obtuvo un valor de amortiguamiento de $2.685/4 = 0.671 \frac{ton.s}{m}$

Para obtener la rigidez en las direcciones U2 y U3 se dividió la rigidez del AMS entre 4, se obtuvo un valor de rigidez de $60.22/4 = 15.055 \frac{ton.s}{m}$

Para obtener la rigidez en la dirección R1 se dividió la rigidez efectiva entre 4, se obtuvo un valor de rigidez rotacional en Z de $481.758/4 = 120.44 \frac{ton.s}{m}$

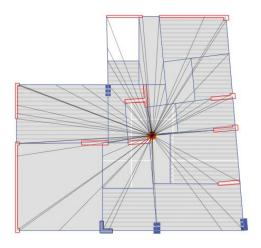
A continuación, en la Figura 21 se muestran los valores obtenidos ubicados en las propiedades del link, se repitió el mismo proceso para los 5 casos estudiados.

Figura 21Propiedades de link


Nota. Elaboración propia

Para ubicar el AMS se consideró la azotea ya que es un área libre y en una zona que se aproxime al centro de masas de la estructura, además se tiene a la placa del ascensor como soporte más cercano para transferir la carga del AMS, en los 5 casos estudiados se consideró la misma ubicación.

Se colocaron los 4 links como base del bloque de concreto (AMS) y sobre los mismos se modeló la losa que ya habíamos configurado previamente según cada caso, a continuación, en la Figura 22 se muestra el esquema en 3D y en la Figura 23 el centro de masas de la estructura donde se colocará el AMS.


Figura 22

Esquema en 3D de AMS

Nota. Elaboración propia

Figura 23Centro de masas del edificio

Nota. Elaboración propia

CAPÍTULO VII: PRESENTACIÓN Y DISCUSIÓN DE LOS RESULTADOS

7.1. Resultados del Análisis Dinámico

Como se mencionó en el capítulo 4, se definieron 5 casos de estudio, mas el modelo base que no incorpora AMS. Para definir los parámetros óptimos utilizamos la relación de masa del AMS con los porcentajes 1-5% para los casos del 1-5 respectivamente y con ello obtuvimos la relación de frecuencia y de amortiguamiento respectivo con el fin de observar el desempeño dinámico de la estructura, este proceso se describió en el capítulo 6 al hallar los parametros optimos del AMS. En los parámetros optimos ponemos notar que la relación de frecuencia es inversamente proporcional a la relación de masa, a mayor relación de masa menor será la relación de frecuencia. La relación de amortiguamiento va aumentando conforme la relación de masa aumenta al ser una formula cuadrática. La Tabla 20 proporciona los valores óptimos de los parámetros para cada caso de estudio.

 Tabla 20

 Relación de masa, frecuencia y amortiguamiento óptimas para cada caso de estudio

Caso de	Relación de	Relación de	Relación de
estudio	masa	frecuencia	amortiguamiento
estudio	μ	f	ξ
1	0.01	0.9901	0.060
2	0.02	0.980	0.084
3	0.03	0.971	0.101
4	0.04	0.962	0.115
5	0.05	0.952	0.127

Nota. Elaboración propia

Con los valores de relaciones obtenidos en la tabla 20 se procedió a realizar los cálculos de frecuencia, amortiguamiento, rigidez y periodo con las formulas descritas en el apartado 6.1 los cuales se muestran resumidos en la Tabla 21 de a continuación.

Tabla 21Parámetros óptimos de los casos de estudio

Caso de	Masa AMS	Frecuencia AMS	Amortiguamiento del AMS	Periodo AMS	Rigidez AMS	Kz efectiva
estudio	$m (ton.s^2/m)$	$\omega_{\rm a} (s^{-1})$	C_a (ton/m/s)	$T_a(s)$	K_a (ton/m)	K_z (ton/m)
1	8.22	0.431	2.685	2.322	60.22	481.758
2	16.44	0.429	7.445	2.333	119.259	954.07
3	24.66	0.427	13.414	2.344	177.151	1417.211
4	32.88	0.424	20.256	2.356	233.931	1871.445
5	41.11	0.422	27.772	2.367	289.628	2317.027

Nota. Elaboración propia.

Los cálculos de amortiguamiento y rigidez para cada link que se describieron en el apartado 6.2.1 se presenta a modo de resumen a continuación, para obtener el valor de cada link para cada caso se dividió entre 4 el amortiguamiento del AMS, la rigidez AMS y la rigidez efectiva descrita en la tabla 21. Con dichos valores se modeló el AMS para cada caso de estudio en el ETABS. Se muestran en la Tabla 22.

Tabla 22Parámetros del elemento link para cada caso de estudio

Caso de estudio	Amortiguamiento	Rigidez X e Y	Rigidez Z
estudio	(ton/m/s)	(ton/m)	(ton/m)
1	0.671	15.055	120.44
2	1.861	29.815	238.517
3	3.353	44.288	354.303
4	5.064	58.483	467.861
5	6.943	72.407	579.257

Nota. Elaboración propia

7.1.1. Estructura sin AMS

Como punto de comparación tenemos los resultados de la estructura base, es decir, la estructura sin el AMS a la cual llamaremos caso 0. A partir del análisis dinámico obtenido con el software ETABS se presentarán a continuación las tablas con valores de los modos de vibración, derivas de entrepiso, aceleraciones y fuerzas cortante.

7.1.1.1. Modos de vibración

Para el primer modo de vibración, se observa la mayor masa participativa en la dirección Y-Y con un valor de 0.3247 seguido de la dirección X-X con un valor de 0.3677. Se visualizan los módos de vibración del caso 0 en la Tabla 23.

Tabla 23 *Modo de vibración de caso 0*

Caso	Modo	Periodo	UX	UY	RZ
Modal	1	2.309	0.1431	0.3247	0.0674
Modal	2	1.911	0.3677	0.1561	0.0001
Modal	3	1.131	0.0247	0.0502	0.3697
Modal	4	0.704	0.0253	0.055	0.0053
Modal	5	0.505	0.08	0.0415	0.0000
Modal	6	0.374	0.0073	0.0169	0.0073
Modal	7	0.285	0.0157	0.0215	0.0852
Modal	8	0.239	0.0186	0.0008	0.0054
Modal	9	0.236	0.0168	0.0297	0.0002
Modal	10	0.166	0.0063	0.0094	0.0011
Modal	11	0.144	0.0274	0.0121	0.0004
Modal	12	0.129	0.006	0.0228	0.0362

Modal	13	0.122	0.0034	0.005	0.0053
Modal	14	0.101	0.0302	0.0138	0.0000
Modal	15	0.095	0.007	0.0148	0.0011
Modal	16	0.082	0.0164	0.0429	0.0162
Modal	17	0.077	0.0442	0.0195	0.0003
Modal	18	0.075	0.0007	0.0017	0.0173
Modal	19	0.066	0.0222	0.0426	0.0037
Modal	20	0.064	0.0396	0.0201	0.0003
Modal	21	0.059	0.0047	0.0139	0.0039
Modal	22	0.054	0.0201	0.0044	0.0049
Modal	23	0.053	0.0005	0.0071	0.0714
Modal	24	0.050	0.0029	0.0089	0.0086

7.1.1.2. Desplazamientos máximos

Los desplazamientos para el edificio sin AMS alcanza un valor máximo en el último piso de 0.253m en la dirección X-X y un valor máximo de 0.314m en la dirección Y-Y. A continuación se muestra un cuadro resumen de los desplazamiento por piso en ambas direcciones. Se visualizan los desplazamiento máximos en la Tabla 24.

Tabla 24Desplazamientos máximos de caso 0

Nivel	Desplaz. X (m)	Desplaz. Y (m)
Piso 22	0.253	0.314
Piso 21	0.245	0.306
Piso 20	0.237	0.297
Piso 19	0.228	0.287
Piso 18	0.218	0.277
Piso 17	0.208	0.265
Piso 16	0.198	0.253
Piso 15	0.186	0.239
Piso 14	0.175	0.226
Piso 13	0.163	0.211
Piso 12	0.150	0.196
Piso 11	0.137	0.180
Piso 10	0.124	0.163
Piso 9	0.111	0.146
Piso 8	0.097	0.129
Piso 7	0.083	0.111
Piso 6	0.070	0.093
Piso 5	0.056	0.076
Piso 4	0.043	0.058
Piso 3	0.030	0.041
Piso 2	0.018	0.025
Piso 1	0.009	0.012

Nota. Elaboración propia

7.1.1.3. Deriva de entrepiso

La deriva de entrepiso para el edificio sin AMS logra un valor máximo de 0.00676 en la dirección Y-Y,a pesar de ser valor muy próximo al límite permisible dado por la norma E.030 de Diseño sismorresistente no llega a igual y/o superar el mismo por lo que se acepta dicho valor. En la dirección X-X se obtiene una deriva máxima de 0.00528. Dichos valores de derivas se ven reflejados en la Tabla 25.

Tabla 25Derivas de entrepiso de caso 0

Nivel	Deriva X	Deriva Y
Piso 22	0.0034	0.0036
Piso 21	0.0036	0.0039
Piso 20	0.0038	0.0044
Piso 19	0.0041	0.0048
Piso 18	0.0043	0.0051
Piso 17	0.0045	0.0055
Piso 16	0.0047	0.0057
Piso 15	0.0049	0.0060
Piso 14	0.0050	0.0061
Piso 13	0.0051	0.0063
Piso 12	0.0052	0.0065
Piso 11	0.0052	0.0066
Piso 10	0.0053	0.0067
Piso 9	0.0053	0.0068
Piso 8	0.0053	0.0068
Piso 7	0.0052	0.0068
Piso 6	0.0051	0.0067
Piso 5	0.0050	0.0066
Piso 4	0.0047	0.0064
Piso 3	0.0043	0.0059
Piso 2	0.0036	0.0051
Piso 1	0.0024	0.0034

Nota. Elaboración propia

7.1.1.4. Aceleración

La aceleración del edificio sin AMS alcanza un valor máximo en el último piso de 8.29m/s en la dirección X-X y un valor máximo de 9.13m/s en la dirección Y-Y. A continuación se muestra en la Tabla 26 un cuadro resumen de las aceleraciones obtenidas por piso en ambas direcciones.

Tabla 26Aceleración de entrepiso de caso 0

Nissal	Aceleraciones (m/s)			
Nivel -	Dirección X	Dirección Y		
Piso 22	8.29	9.13		
Piso 21	5.41	5.80		
Piso 20	5.35	5.74		
Piso 19	5.19	5.07		
Piso 18	5.01	5.30		
Piso 17	4.65	5.74		
Piso 16	4.79	5.17		
Piso 15	4.44	4.61		
Piso 14	4.51	4.93		
Piso 13	4.74	5.42		
Piso 12	4.90	5.27		
Piso 11	4.86	5.14		
Piso 10	5.05	5.17		
Piso 9	5.30	5.39		
Piso 8	5.50	5.48		
Piso 7	5.65	6.19		
Piso 6	5.84	6.73		
Piso 5	5.98	6.76		
Piso 4	6.08	6.82		
Piso 3	6.22	6.49		
Piso 2	6.22	6.54		
Piso 1	6.09	6.53		

7.1.1.5. Fuerza cortante

En la Tabla 27 se muestra la cortante basal en ambas direcciones obtenidas para el modelo sin AMS.

Tabla 27Fuerza cortante basal de la estructura sin AMS

Fuerza cortante	F_X Tonf	F _Y Tonf
SX DIN	477.92	235.90
SY DIN	235.90	448.66

Nota. Elaboración propia

7.1.2. Estructura con AMS

Se evaluaron los casos de estudio del 1 al 5 para relaciones de masa de 0.01 a 0.05 respectivamente, con parámetros óptimos de relación de frecuencia y amortiguamiento

correspondientes a cada caso. A partir del análisis dinámico obtenido con el software ETABS se presentarán a continuación las tablas con los modos de vibración, derivas de entrepiso, aceleraciones y fuerzas cortante.

7.1.2.1. Desplazamientos máximos

Los desplazamientos para el edificio con AMS alcanzan un valor máximo en el último piso de 0.230 m en la dirección X-X para el primer caso de estudio, sin embargo se puede notar que a medida que aumenta la relacion de masa, los desplazamientos disminuyen obteniendo un valor de 0.197 m en la dirección X-X para el último caso de estudio. A continuación se muestra la Tabla 28 que resume los desplazamiento por piso en la dirección X-X.

Tabla 28Desplazamientos máximos en dirección X de casos 1 al 5

Nimal	Desplazamiento X-X (m)						
Nivel -	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5		
Piso 22	0.230	0.218	0.210	0.203	0.197		
Piso 21	0.223	0.211	0.203	0.196	0.191		
Piso 20	0.215	0.204	0.196	0.190	0.184		
Piso 19	0.207	0.196	0.189	0.183	0.177		
Piso 18	0.198	0.188	0.181	0.175	0.170		
Piso 17	0.189	0.179	0.172	0.167	0.162		
Piso 16	0.179	0.170	0.164	0.158	0.154		
Piso 15	0.169	0.161	0.154	0.149	0.145		
Piso 14	0.158	0.151	0.145	0.140	0.136		
Piso 13	0.148	0.140	0.135	0.131	0.127		
Piso 12	0.136	0.130	0.125	0.121	0.118		
Piso 11	0.125	0.119	0.114	0.111	0.108		
Piso 10	0.113	0.107	0.104	0.100	0.098		
Piso 9	0.101	0.096	0.093	0.090	0.088		
Piso 8	0.088	0.084	0.081	0.079	0.077		
Piso 7	0.076	0.073	0.070	0.068	0.066		
Piso 6	0.063	0.061	0.059	0.057	0.056		
Piso 5	0.051	0.049	0.047	0.046	0.045		
Piso 4	0.039	0.037	0.036	0.035	0.035		
Piso 3	0.028	0.026	0.026	0.025	0.025		
Piso 2	0.017	0.016	0.016	0.016	0.015		
Piso 1	0.008	0.008	0.008	0.007	0.007		

Nota. Elaboración propia

Los desplazamientos para el edificio con AMS alcanzan un valor máximo en el piso 22 de 0.262m en la dirección Y-Y para el primer caso de estudio, sin embargo se puede notar que conforme aumenta la relacion de masa, los desplazamientos disminuyen obteniendo un valor de 0.224m en la dirección Y-Y para el último caso de estudio. A continuación

se muestra la Tabla 29 como resumen de los desplazamiento por piso en la dirección Y-Y.

Tabla 29Desplazamientos máximos en dirección Y de casos 1 al 5

		Despl	azamiento Y-	Y (m)	
Nivel	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
Piso 22	0.262	0.247	0.238	0.230	0.224
Piso 21	0.254	0.240	0.231	0.223	0.217
Piso 20	0.246	0.232	0.223	0.216	0.210
Piso 19	0.238	0.224	0.215	0.208	0.202
Piso 18	0.228	0.215	0.206	0.200	0.194
Piso 17	0.218	0.206	0.197	0.191	0.185
Piso 16	0.208	0.195	0.187	0.181	0.176
Piso 15	0.197	0.185	0.177	0.171	0.166
Piso 14	0.185	0.174	0.167	0.161	0.156
Piso 13	0.173	0.162	0.156	0.150	0.146
Piso 12	0.160	0.151	0.144	0.140	0.136
Piso 11	0.147	0.139	0.133	0.128	0.125
Piso 10	0.134	0.126	0.121	0.117	0.114
Piso 9	0.120	0.113	0.109	0.105	0.102
Piso 8	0.106	0.100	0.096	0.093	0.091
Piso 7	0.092	0.087	0.084	0.081	0.079
Piso 6	0.078	0.073	0.071	0.069	0.067
Piso 5	0.063	0.060	0.058	0.056	0.054
Piso 4	0.049	0.046	0.044	0.043	0.042
Piso 3	0.034	0.033	0.032	0.031	0.030
Piso 2	0.021	0.020	0.020	0.019	0.019
Piso 1	0.010	0.009	0.009	0.009	0.009

Nota. Elaboración propia

7.1.2.2. Deriva de entrepiso

Las derivas de entrepiso para el edificio con AMS alcanzan un valor máximo en el piso 9 de 0.00489 en la dirección X-X para el primer caso de estudio, sin embargo se puede notar que conforme se va aumentando la relacion de masa, las derivas de entrepiso disminuyen obteniendo un valor de 0.00414 en la dirección X-X para el último caso de estudio. La Tabla 30 muestra un resumen de las derivas de entrepiso de cada nivel en la dirección X-X.

Tabla 30Derivas de entrepiso en dirección X de casos 1 al 5

Nivel			Deriva X-X		
Nivei	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
Piso 22	0.00306	0.00291	0.00282	0.00275	0.00270
Piso 21	0.00328	0.00312	0.00302	0.00295	0.00290
Piso 20	0.00352	0.00336	0.00325	0.00317	0.00311

Piso 19	0.00377	0.00360	0.00349	0.00340	0.00334
Piso 18	0.00400	0.00383	0.00371	0.00361	0.00354
Piso 17	0.00420	0.00402	0.00389	0.00379	0.00371
Piso 16	0.00437	0.00417	0.00403	0.00392	0.00384
Piso 15	0.00448	0.00427	0.00413	0.00401	0.00392
Piso 14	0.00458	0.00436	0.00420	0.00408	0.00399
Piso 13	0.00465	0.00443	0.00427	0.00414	0.00403
Piso 12	0.00471	0.00448	0.00431	0.00418	0.00407
Piso 11	0.00476	0.00453	0.00436	0.00422	0.00411
Piso 10	0.00480	0.00456	0.00438	0.00425	0.00413
Piso 9	0.00481	0.00457	0.00440	0.00426	0.00414
Piso 8	0.00478	0.00455	0.00438	0.00424	0.00413
Piso 7	0.00475	0.00452	0.00436	0.00422	0.00411
Piso 6	0.00468	0.00446	0.00430	0.00418	0.00407
Piso 5	0.00455	0.00434	0.00420	0.00408	0.00397
Piso 4	0.00431	0.00413	0.00400	0.00389	0.00380
Piso 3	0.00393	0.00377	0.00366	0.00356	0.00348
Piso 2	0.00330	0.00318	0.00309	0.00301	0.00295
Piso 1	0.00217	0.00209	0.00203	0.00199	0.00195

Las derivas de entrepiso para el edificio con AMS alcanzan un valor máximo en el piso 9 de 0.00560m en la dirección Y-Y para el primer caso de estudio, sin embargo se puede notar que conforme va aumentando la relacion de masa, las derivas de entrepiso disminuyen obteniendo un valor de 0.00477m en la dirección Y-Y para el último caso de estudio. La Tabla 31 muestra un resumen de las derivas de entrepiso de cada nivel en la dirección Y-Y.

Tabla 31Derivas de entrepiso en dirección Y de casos 1 al 5

Nivel		Deriva Y-Y						
	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5			
Piso 22	0.00327	0.00318	0.00312	0.00307	0.00303			
Piso 21	0.00361	0.00351	0.00344	0.00338	0.00334			
Piso 20	0.00398	0.00386	0.00378	0.00372	0.00366			
Piso 19	0.00433	0.00420	0.00411	0.00403	0.00397			
Piso 18	0.00464	0.00449	0.00439	0.00430	0.00423			
Piso 17	0.00489	0.00472	0.00460	0.00451	0.00443			
Piso 16	0.00508	0.00489	0.00476	0.00465	0.00456			
Piso 15	0.00520	0.00499	0.00484	0.00473	0.00463			
Piso 14	0.00531	0.00507	0.00491	0.00478	0.00468			
Piso 13	0.00540	0.00514	0.00496	0.00483	0.00471			
Piso 12	0.00547	0.00519	0.00501	0.00487	0.00474			
Piso 11	0.00554	0.00524	0.00505	0.00490	0.00477			

Piso 10	0.00558	0.00528	0.00507	0.00491	0.00478
Piso 9	0.00560	0.00528	0.00507	0.00491	0.00477
Piso 8	0.00557	0.00525	0.00504	0.00487	0.00474
Piso 7	0.00557	0.00525	0.00503	0.00487	0.00473
Piso 6	0.00555	0.00523	0.00502	0.00486	0.00472
Piso 5	0.00547	0.00516	0.00496	0.00481	0.00468
Piso 4	0.00529	0.00500	0.00481	0.00467	0.00455
Piso 3	0.00493	0.00467	0.00450	0.00437	0.00427
Piso 2	0.00426	0.00404	0.00391	0.00380	0.00371
Piso 1	0.00287	0.00273	0.00264	0.00257	0.00251

7.1.2.3. Aceleración

Las aceleraciones para el edificio con AMS alcanzan un valor máximo en el último nivel de 8.23 m/s en la dirección X-X para el primer caso de estudio, sin embargo se puede notar que conforme va aumentando la relacion de masa, las aceleraciones en cada piso disminuyen obteniendo un valor de 8.08 en la dirección X-X para el último caso de estudio. En la Tabla 32 se muestra un resumen de las aceleraciones de cada nivel en la dirección X-X.

Tabla 32Aceleraciones por nivel en dirección X de casos 1 al 5

Nissal	Aceleraciones dirección X (m/s)						
Nivel	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5		
Piso 22	8.23	8.19	8.15	8.12	8.08		
Piso 21	5.33	5.27	5.23	5.19	5.15		
Piso 20	5.25	5.20	5.16	5.12	5.09		
Piso 19	5.08	5.04	5.01	4.98	4.96		
Piso 18	4.91	4.87	4.84	4.82	4.80		
Piso 17	4.59	4.55	4.51	4.49	4.46		
Piso 16	4.73	4.69	4.66	4.64	4.61		
Piso 15	4.39	4.35	4.32	4.30	4.27		
Piso 14	4.46	4.43	4.41	4.39	4.37		
Piso 13	4.67	4.64	4.62	4.59	4.57		
Piso 12	4.87	4.85	4.82	4.80	4.78		
Piso 11	4.80	4.78	4.77	4.75	4.73		
Piso 10	5.03	5.01	5.00	4.98	4.97		
Piso 9	5.29	5.27	5.26	5.25	5.24		
Piso 8	5.49	5.48	5.47	5.46	5.45		
Piso 7	5.63	5.63	5.62	5.61	5.60		
Piso 6	5.82	5.81	5.81	5.80	5.79		
Piso 5	5.95	5.95	5.94	5.94	5.93		
Piso 4	6.08	6.07	6.07	6.07	6.06		
Piso 3	6.16	6.16	6.16	6.16	6.16		

Piso 2	6.11	6.11	6.11	6.11	6.11
Piso 1	6.06	6.06	6.06	6.06	6.06

Las aceleraciones para el edificio con AMS alcanzan un valor máximo en el último nivel de 9.11 m/s en la dirección Y-Y para el primer caso de estudio, sin embargo se puede notar que a medida que aumenta la relacion de masa, las aceleraciones en cada piso disminuyen obteniendo un valor de 9.00m/s en la dirección Y-Y para el último caso de estudio. La Tabla 33 muestra un resumen de las aceleraciones de cada nivel en la dirección Y-Y.

Tabla 33Aceleraciones por nivel en dirección Y de casos 1 al 5

Missal		Aceleraciones dirección Y (m/s)						
Nivel	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5			
Piso 22	9.11	9.08	9.05	9.03	9.00			
Piso 21	5.77	5.74	5.70	5.67	5.63			
Piso 20	5.60	5.55	5.51	5.48	5.45			
Piso 19	5.04	5.02	4.99	4.96	4.93			
Piso 18	5.28	5.25	5.23	5.20	5.18			
Piso 17	5.63	5.59	5.56	5.54	5.52			
Piso 16	5.05	5.01	4.98	4.96	4.94			
Piso 15	4.50	4.46	4.43	4.40	4.37			
Piso 14	4.83	4.80	4.77	4.74	4.71			
Piso 13	5.34	5.31	5.28	5.26	5.24			
Piso 12	5.19	5.16	5.14	5.11	5.09			
Piso 11	5.13	5.12	5.11	5.10	5.09			
Piso 10	5.16	5.16	5.15	5.14	5.13			
Piso 9	5.34	5.32	5.30	5.28	5.26			
Piso 8	5.45	5.43	5.41	5.40	5.38			
Piso 7	6.17	6.16	6.14	6.13	6.11			
Piso 6	6.70	6.69	6.68	6.67	6.65			
Piso 5	6.74	6.73	6.72	6.71	6.70			
Piso 4	6.79	6.79	6.78	6.77	6.76			
Piso 3	6.48	6.48	6.48	6.48	6.48			
Piso 2	6.53	6.53	6.53	6.53	6.53			
Piso 1	6.52	6.52	6.52	6.52	6.52			

Nota. Elaboración propia

7.1.2.4. Fuerza cortante

La Tabla 34 muestra un resumen de la fuerza cortante obtenidas en ambas direcciones para cada caso de estudio. Se puede notar que hay una reducción con respecto a las fuerza cortante del edificio sin AMS como se describió en la tabla 27, además se observa que

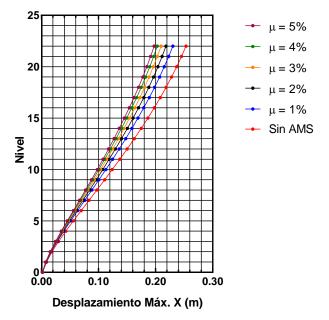
según aumenta la relación de masa, las fuerzas cortantes disminuyen en ambas direcciones.

 Tabla 34

 Fuerza cortante basal de la estructura con AMS

Caso	Vx (tn)	Vy (tn)
Modelo 1	328.47	280.54
Modelo 2	319.36	275.36
Modelo 3	313.08	271.86
Modelo 4	308.37	269.16
Modelo 5	304.63	266.97

Nota. Elaboración propia


7.2. Comparativa del Análisis Dinámico

A partir de los resultados mostrados en los puntos anteriores se realiza el análisis comparativo de los modelos por medio de los gráficos y tablas que se muestran a continuación.

7.2.1.1. Desplazamientos máximos

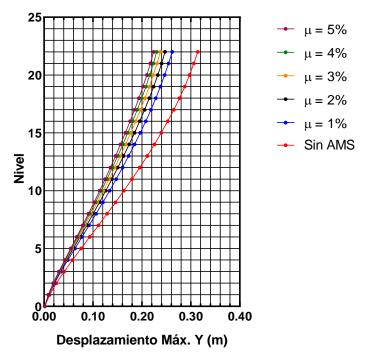

El desplazamiento máximo de cada nivel para las direcciones X e Y se muestran en la Figura 24 y Figura 25. Se observa que conforme la relación de masa aumenta los desplazamientos van disminuyendo en cada nivel tendiendo a la izquierda. Y si comparamos con la estructura sin AMS se evidencia que para cualquier caso de relación de masa, los desplazamientos de todos los niveles han sido reducidos.

Figura 24Comparación de desplazamientos máximos en la dirección X

Nota. Elaboración propia

Figura 25Comparación de desplazamientos máximos en la dirección Y

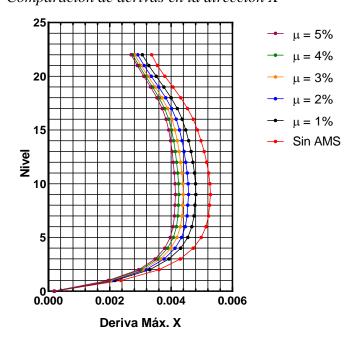
Se observa que conforme la relación de masa va en aumento, el desplazamiento máximo va disminuyendo en cada caso de estudio hasta en un 29% en la dirección Y-Y.

En la Tabla 35 se observa los porcentajes de reducción de los desplazamientos máximos correspondientes al último nivel con respecto a la estructura sin AMS.

Tabla 35Comparación de Desplazamientos máximos en el último nivel

Caso de		Desplazamientos Máximos (m)					
estudio	μ	Dirección X-X	% Reducción	Dirección Y-Y	% Reducción		
0	Sin AMS	0.2532	-	0.3142	-		
1	1%	0.2301	9%	0.2618	17%		
2	2%	0.2182	14%	0.2473	21%		
3	3%	0.2096	17%	0.2378	24%		
4	4%	0.2029	20%	0.2303	27%		
5	5%	0.1974	22%	0.224	29%		

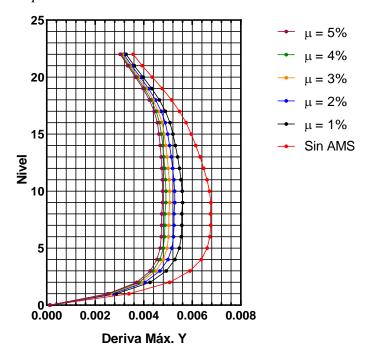
Nota. Elaboración propia


De la tabla se observa que la mayor reducción se da en la dirección Y-Y con la incorporación del AMS, llegando a alcanzar un 29% para μ=5%. La implementación del AMS en ambas direcciones genera una disminución significativa de los desplazamientos

con respecto al sistema sin amortiguador, sin embargo, conforme se aumenta la razón de masa los desplazamientos se van reduciendo en menor proporción.

7.2.1.2. Derivas máximas

Análogamente al análisis de los desplazamientos, se evaluó las derivas de la estructura sin y con la incorporación del AMS para diferentes razones de masa. Se observa que conforme la relacion de masa va en aumento las derivas de entrepiso van disminuyendo en cada nivel, ampliando su valor hacia la media altura de la estructura y tendiendo a la izquierda hacia los niveles superiores. Si comparamos con la estructura sin AMS se evidencia que para cualquier caso de relación de masa, las derivas de entrepiso de todos los niveles han sido reducidos. Se visualiza dicho comportamiento en la Figura 26.


Figura 26Comparación de derivas en la dirección X

Nota. Elaboración propia

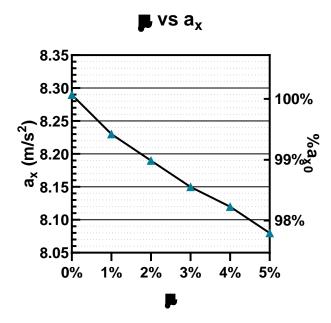
Se observa en la Figura 27 que conforme la relacion de masa aumenta las derivas de entrepiso va disminuyendo en cada caso de estudio hasta lograr un 29% de reducción en la dirección Y-Y.

Figura 27Comparación de derivas en la dirección Y

En la Tabla 36 se puede observar los porcentajes en los que se reduce las derivas de entrepiso correspondientes al valor máximo para caso de estudio en comparación con la estructura sin AMS.

Tabla 36Comparación de derivas máximas

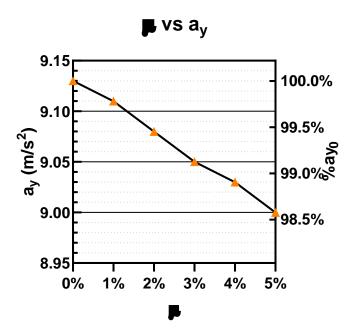
Caso de		Derivas Máximas					
estudio	μ	Dirección X-X	% Reducción	Dirección Y-Y	% Reducción		
0	Sin AMS	0.0053	-	0.0068	-		
1	1%	0.0048	9%	0.0056	17%		
2	2%	0.0046	14%	0.0053	22%		
3	3%	0.0044	17%	0.0051	25%		
4	4%	0.0043	19%	0.0049	27%		
5	5%	0.0041	22%	0.0048	29%		


Nota. Elaboración propia

De la tabla se observa que la mayor reducción se da en la dirección Y-Y con la incorporación del AMS, llegando a alcanzar un 29% para μ=5%. La implementación del AMS en ambas direcciones genera una disminución significativa de las derivas de entrepiso con respecto al sistema sin amortiguador o caso 0, sin embargo, conforme se aumenta la razón de masa los derivas se van reduciendo en menor proporción.

7.2.1.3. Aceleraciones

Las aceleraciones obtenidas del análisis sísmico modal espectral cuando se implementa el Amortiguador de masa sintonizada se muestra en la Figura 28 y Figura 29. Se observa que conforme la relacion de masa aumenta la aceleración va disminuyendo en cada caso de estudio, hasta lograr reducirse en más de un 2% en la dirección X-X.


Figura 28Comparación de aceleraciones en la dirección X

Nota. Elaboración propia

Se observa en la Figura 29 que conforme la relacion de masa aumenta la aceleración va disminuyendo en cada caso de estudio, logrando reducirse hasta en aproximadamente un 1.5% en la dirección Y-Y.

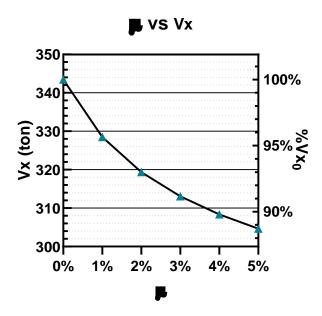
Figura 29Comparación de aceleraciones en la dirección Y

En la Tabla 37 se puede observar los porcentajes de reducción de las aceleraciones correspondientes al valor máximo para caso de estudio la cual se dio en el último nivel del edificio, siendo este el nivel 22, con respecto a la estructura sin AMS.

Tabla 37Comparación de aceleraciones en el nivel 22

Caso de		Aceleraciones en el Nivel 22 en (m ² /s)				
estudio	μ	Dirección X-X	% Reducción	Dirección Y-Y	% Reducción	
0	Sin AMS	8.29	-	9.13	-	
1	1%	8.23	1%	9.11	0%	
2	2%	8.19	1%	9.08	1%	
3	3%	8.15	2%	9.05	1%	
4	4%	8.12	2%	9.03	1%	
5	5%	8.08	3%	9.00	1%	

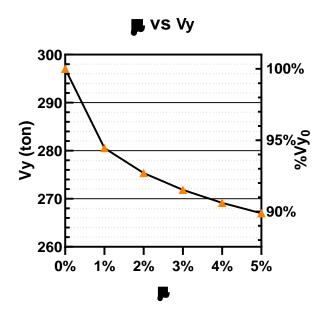
Nota. Elaboración propia


De la tabla se observa que la mayor reducción se da en la dirección X-X con la incorporación del AMS, llegando a alcanzar un 3% para μ =5%. La implementación del

AMS en ambas direcciones genera una disminución significativa de las aceleraciones con respecto al sistema sin amortiguador o caso 0, sin embargo, conforme se aumenta la razón de masa los desplazamientos se van reduciendo en menor proporción.

7.2.1.4. Fuerza cortante

El cortante basal obtenido del análisis sísmico modal espectral cuando se implementa el Amortiguador de masa sintonizada se muestra en la Figura 30 y Figura 31. Se observa que conforme la relacion de masa aumenta la cortante basal va disminuyendo en cada caso de estudio, hasta alcanzar una reducción de más del 10% en la dirección X-X.


Figura 30Comparación de cortante basal en la dirección X

Nota. Elaboración propia

Se observa en la Figura 31 que conforme la relacion de masa aumenta la cortante basal va disminuyendo en cada caso de estudio hasta aproximadamente un máximo de 10% en la dirección Y-Y.

Figura 31Comparación de cortante basal en la dirección Y

En la Tabla 38 se puede observar los porcentajes de reducción de las cortantes basales correspondientes al valor máximo para caso de estudio con respecto a la estructura sin AMS.

Tabla 38 *Comparación de cortantes basales*

Caso de		Cortantes basales (ton)					
estudio μ	μ	Dirección X	% Reducción	Dirección Y	% Reducción		
0	-	343.42	-	297.05	-		
1	1%	328.47	4%	280.54	6%		
2	2%	319.36	7%	275.36	7%		
3	3%	313.08	9%	271.86	8%		
4	4%	308.37	10%	269.16	9%		
5	5%	304.63	11%	266.97	10%		

Nota. Elaboración propia

De la tabla se observa que la mayor reducción se da en la dirección X-X con la incorporación del AMS, desde un 4% para el caso 1 hasta alcanzar un 11% para el caso 5 μ =5%. La implementación del AMS en ambas direcciones genera una disminución significativa de la cortante basal con respecto al sistema sin amortiguador o caso 0, sin

embargo, conforme se aumenta la razón de masa la cortante basal se van reduciendo en menor proporción.

7.3. Discusión de los resultados

A lo largo del capítulo 6 se determinaron los parámetros del AMS para relación de masa μ =1%. En el presente capítulo, por medio del mismo procedimiento, se obtuvieron los parámetros óptimos para las demás razones de masa (2% a 5%). De la Tabla 20 observamos que la relación de frecuencia f va divergiendo de la sintonía perfecta (f = 1) conforme aumenta la razón de masa.

La Tabla 23 muestra que el periodo fundamental de 2.309s es correspondiente a un modo traslacional en Y. De la distribución de muros y columnas en planta se puede inferir que es el comportamiento esperado al contar con una menor densidad de elementos resistentes en dicha dirección. El primer modo rotacional en Z aparece en el modo 3, con 1.13s de periodo y 36.97% de participación modal, estando en concordancia con la irregularidad torsional presente en la edificación.

En el acápite 7.2 se desarrolló la comparativa del análisis dinámico, analizando los resultados de los 4 indicadores propuestos (desplazamientos máximos, derivas máximas, aceleraciones y fuerza cortante).

De la Figura 24 podemos afirmar que al implementar el AMS con razón de masa del 1% en la edificación se obtiene la reducción más significativa, en comparación con ir aumentando la razón de masa progresivamente.

Se observa en la Figura 25, y comparándola con la Figura 24 que la implementación del AMS en el edificio generó mayor beneficio en la dirección Y reduciéndose los desplazamientos en un 17% en comparación del 9% en la dirección X, cumpliendose con el resultado esperado, puesto que se sintonizó el AMS con respecto al periodo fundamental (traslacional en Y).

De la Tabla 35 se observa que conforme se aumenta la razón de masa los desplazamientos se van reduciendo en menor proporción, sin embargo logrando reducciones significativas para razones del 5%, de hasta 22% en la dirección X y 29% en la dirección Y.

La Figura 26, Figura 27 y Tabla 36 muestran resultados similares en términos de derivas a los obtenidos para los desplazamientos, siendo estas derivas correspondientes a los desplazamientos máximos obtenidos. El beneficio obtenido de implementar el AMS es significativo para la dirección Y, donde la deriva incial era de 0.0068, muy próximo al límite impuesto por la normativa, logrando reducirla hasta 0.0056 (17%), lo cual permitiría la optimización de los elementos estructurales en dicha dirección.

Los gráficos que representan el comportamiento de las aceleraciones, Figura 28 y Figura 29, muestran un comportamiento casi lineal del porcentaje de reducción en ambas direcciones al aumentar la razón de masa del AMS. Se obtiene poca mejoría en comparación de la obtenida en desplazamientos, logrando reducciones, de acuerdo a la Tabla 37, de hasta el 3% y 1% en las direcciones X e Y respectivamente, para una razón de masa del 5%.

La fuerza cortante en la dirección X, según la Figura 30, se reduce en menor proporción al ir incrementando las razones de masa, sin embargo, logrando una mejoría significativa al menguarla en un 11% para μ=5%. De la Figura 31 se observa el mismo resultado para la dirección Y, con la diferencia que se ve un mejor desempeño para el primer porciento de razón de masa, logrando reducir hasta en un 6% la fuerza cortante en comparación con el 4% de la dirección X. No obstante, se muestra que al ir incrementando las razones de masa, se va obteniendo una mayor reducción en los cortantes basales en X frente a los obtenidos en la dirección Y, tal como se detalla en la Tabla 38.

7.4. Contrastación de hipótesis

Para la contrastación de la hipótesis general se hará uso de los resultados obtenidos a partir de la implementación del AMS con una razón de masa del 1%, que corresponde a un porcentaje típico y razonable para el cual es posible implementarlo sin dificultades.

- Hipótesis general

Al realizar el análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo se mejora la respuesta dinámica cuando se implementa el AMS

Se afirma que se cumple la hipótesis general puesto que la respuesta dinámica, definida en términos de desplazamiento, aceleración, derivas y fuerza cortante, se redujo en ambas direcciones X e Y por medio de la implementación el AMS. Se obtuvo reducciones de hasta un 17% en la dirección Y en cuanto a desplazamientos y derivas, y hasta en un 4% en cuanto a cortante basal en la dirección X. En el caso de aceleraciones, la reducción es mínima, obteniendo tan solo un 1% de mejora en el desempeño en la dirección X.

- Hipótesis específicas
- a) Conociendo las características de masa, rigidez, frecuencia y amortiguamiento del edificio se diseñará el amortiguador de masa sintonizada

Se cumple la primera hipótesis específica puesto que, desde las características de masa, rigidez, frecuencia y amortiguamiento del edificio, obtenidas a partir del modelo matemático desarrollado en SAP2000, se pudo calcular los parámetros necesarios para el

diseño óptimo mediante las relaciones y fórmulas propuestas por Den Hartog, logrando calcular la masa, rigidez y amortiguamiento del amortiguador.

b) Al aumentar la razón de masa hasta un 5% y sintonizar las frecuencias del edificio y el AMS se reducen los desplazamientos y derivas del edificio hasta en un 25%.

Se cumple parcialmente la segunda hipótesis específica, puesto que si bien se logra reducir el desplazamiento máximo (en el último nivel) en la dirección Y de 31.42 cm a 22.40 cm, representando una reducción del 29%, en la dirección X solo se logró reducir hasta un 22%, de 25.32 cm a 19.74 cm. Dado que las derivas están directamente relacionadas con los desplazamientos, las reducciones son similares o idénticas en cuanto a derivas máximas, logrando reducir en la dirección X de 0.0053 a 0.0041 y en la dirección Y de 0.0068 a 0.0048. En esta última dirección se observa que la deriva para la estructura sin AMS se encuentra cerca del límite impuesto por la norma E030 correspondiente a un 0.007. La reducción de este indicador permitiría disminuir la densidad de los elementos rigidizadores como placas en la dirección Y, optimizando el diseño del edificio.

c) Al aumentar la razón de masa hasta un 5% y sintonizar las frecuencias del edificio y el AMS se reducen las aceleraciones y cortantes basales del edificio hasta en un 25%. Se afirma que no se cumple la tercera hipótesis específica, puesto que se obtuvieron reducciones menores al 25% en ambos indicadores y para ambas direcciones. Se logró una disminución en el cortante basal de 343.42 ton a 304.63 ton en la dirección X y de 297.05 ton a 266.97 ton en la dirección Y, lo cual representa una reducción del 11% y 10% en cada dirección respectivamente. Las aceleraciones tuvieron una mínima mejora en su desempeño, alcanzando valores cercanos al 3% en la dirección X y de tan solo un 1% en la dirección Y.

CONCLUSIONES

- 1. La incorporación del AMS con razón de masa de 1% en la edificación multifamiliar de 22 niveles mejoró ampliamente la respuesta dinámica en términos de desplazamientos, derivas y fuerza cortantes. Se logró reducir los desplazamientos y derivas en un 17% en la dirección Y y en un 9% en la dirección X, mientras que las fuerzas cortantes se redujeron en un 4% y 6% para la dirección X e Y respectivamente. Por otro lado, las aceleraciones fueron levemente reducidas logrando una mejoría de solo el 1% en la dirección X y sin beneficio en la dirección Y.
- 2. Los parámetros óptimos del amortiguador de masa sintonizada obtenidos a partir de las ecuaciones de Den Hartog fueron adecuados para el diseño del amortiguador de masa sintonizada, brindando una rigidez y amortiguamientos que permitieron reducir la respuesta dinámica de le estructura.
- 3. Se logró reducir las derivas hasta en un 29% en la dirección Y y hasta un 22% en la dirección X al incrementar la razón de masa al 5%. Sin embargo, el análisis progresivo de las razones de masa del 1% al 5%, con incrementos en intervalos de 1%, permite concluir que a mayor razón de masa menor es la mejoría con respecto al intervalo anterior.
- 4. Se logra reducir el cortante basal hasta en un 10% en la dirección Y y hasta un 11% en la dirección X al incrementar la razón de masa al 5%. Las aceleraciones solo se reducen hasta un 1% en la dirección Y y hasta un 3% en la dirección X para dicha razón de masa.
- 5. La deriva logró reducirse en la dirección Y de 0.0068 a 0.0056 con la implementación del AMS con razón de masa del 1%, demostrando que puede ser una alternativa viable en los casos en los que sea necesario rigidizar la edificación para cumplir con los límites de deriva impuestos por la norma E030.

RECOMENDACIONES

- Se recomienda evaluar la respuesta dinámica de la estructura, sobretodo en edificaciones irregulares, la implementación del AMS para diferentes ubicaciones, o de varios AMS distribuidos en planta, para encontrar la ubicación o sistema óptimo y obtener el mejor desempeño.
- 2. Las ecuaciones de Den Hartog no son las únicas ecuaciones propuestas para la obtención de un AMS óptimo, por ende se recomienda que se evalúe también el empleo de otras ecuaciones que pueden encontrarse en la bibliografía, donde se proponen incluso relaciones óptimas para la reducción de parámetros o indicadores específicos de la respuesta dinámica.
- 3. Para lograr un análisis más profundo se recomienda evaluar la estructura considerando una frecuencia constante y variar los demás parámetros así como también considerar un amortiguamiento constante, variar los demás parámetros y comparar los resultados.
- 4. Se recomienda que para futuras investigaciones, dado que la disminución en los desplazamientos y derivas al implementar el AMS podrían permitir la reducción de la rigidez y la densidad de muros, se realice el análisis económico de la implementación del AMS, tomando en consideración el incremento del costo de la edificación debido a la instalación del AMS, así como de sus costos de mantenimiento e incluso la pérdida de área útil, y contrastándolo con la reducción en costos obtenida en los elementos estructurales como placas y columnas.

REFERENCIAS BIBLIOGRÁFICAS

- Aguiar, R. (2012). *Dinámica de Estructuras con CEINCI-LAB*. Editorial Centro de Investigaciones Científicas.
- Amaguaña, D. Y. (2016). Análisis de la influencia del número de modos de vibración en la respuesta total de estructuras de hormigón armado. Universidad Central del Ecuador. Obtenido de
 - http://www.dspace.uce.edu.ec/bitstream/25000/6933/1/T-UCE-0011-226.pdf
- Ayhuasi, N. R., & Añamuro, J. E. (2020). Comparación de la respuesta estructural en un edificio de 20 niveles con amortiguadores de masa sintonizada de tipo convencional y pendular mediante modelos físicos a escala reducida. Tesis de pregrado, Universidad Peruana Unión, Juliaca. Obtenido de https://repositorio.upeu.edu.pe/handle/20.500.12840/3315
- Bairán, J. M. (2020). Estudio de la influencia de las demandas de viento en un edificio de altura ubicado en zona de alta simicidad y de la efectividad de los medios para optimizar su diseño. Tesis de maestría, UPC Barcelonatech, Barcelona.
- Borja, M. (2012). Metodología de la investigación científica para ingenieros. Chiclayo.
- Cahuas, D. (2015). *Definición de las variables, enfoque y tipo de investigación*.

 Obtenido de

 https://gc.scalahed.com/recursos/files/r161r/w24762w/Definiciondelasvariables,
 enfoqueytipodeinvestigacion.pdf
- Cámara Peruana de la construcción. (2020). 25° Estudio de Mercado de Edificaciones Urbanas en Lima Metropolitana.
- Cotacallapa, R. P. (2017). Análisis de un edificio asimétrico de 10 niveles de concreto armado con amortiguadores de masa sintonizada. Tesis de pregrado,
 Universidad Nacional San Agustín de Arequipa, Arequipa. Obtenido de http://repositorio.unsa.edu.pe/handle/UNSA/3406
- Den, J. (1967). Mechanical vibrations. New York: McGraw-Hill.
- Donobhan, G. (2007). Aplicación de los métodos estático y dinámico modal para el diseño sísmico de edificios con disipadores de energía. Tesis de maestría, Universidad nacional Autónoma de Mexico.
- Espinoza, G., Neira, D., & Cifuentes, A. (2018). Análisis de un amortiguador de masa sintonizado óptimo en estructuras asimétricas no lineales. *Obras y*

- *Proyectos*(23), 39-54. Obtenido de https://www.scielo.cl/pdf/oyp/n23/0718-2805-oyp-23-0039.pdf
- Esteba, A. (2020). Estudio de la influencia de las demandas de viento en un edificio de altura ubicado en zona de alta sismicidad y de la efectividad de los medios para optimizar su diseño. Tesis de maestría, Universidad Politécnica de Cataluña, Barcelona.
- Genetios, C. (2016). *Introducción al uso de aisladores y disipadores en estructuras*. Editor CAF Banco de desarrollo de América Latina.
- Hernández, R. (2020). *Métodos numéricos para respuesta dinámica de sistemas de*1GDL. Tesis de maestría, Benemérita Universidad Autónoma de Puebla, Puebla.

 Obtenido de https://repositorioinstitucional.buap.mx/handle/20.500.12371/9666
- Hernández, R., Fernández, C., & Baptista, P. (s.f.). *Metodología de la investigación*. México D.F.: Mc Graw Hill.
- Herrera, M. (2018). Desempeño Sísmico en Edificaciones con Aisladores Elastoméricos y Amortiguadores de Fluiodo Viscoso. Tesis de pregrado, Universidad de Piura, Piura.
- Higashino, M., & Okamoto, S. (2006). *Response Control and Seismic Isolation of Buildings*. London: Routledge.
- Ilieva, I. (2019). Estudio comparado de los métodos y dispositivos actuales orientados a amortiguar los efectos del terremoto sobre la estructura de los edificios. Tesis de pregrado, Universidad Politecnica de Valencia, Valencia.
- Korswagen, P. A. (2012). *Análisis y diseño de estructuras con aisladores sísmicos en el Perú*. Pontificia Universidad Catòlica del Perù. Obtenido de https://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/1631/KORS WAGEN_ARIAS_HUARINGA_AISLADORES_SISMICOS_PERU.pdf?seque nce=1&isAllowed=y
- Loa, K. (2020). Control de la respuesta dinámica en el puente peatonal Los Próceres mediante la incorporación de amortiguadores viscosos y de masa sintonizada. Pontificia Universidad Católica del Perú. Obtenido de https://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/22732/LOA _LÓPEZ_KENYO_CONTROL_RESPUESTA_DINAMICA.pdf?sequence=1&i sAllowed=y

- Lourenco, R. (2011). *Design, Construction and Testing of an Adaptive Pendulum Tuned Mass Damper*. Tesis de maestría, University of Waterloo, Waterloo. Obtenido de https://uwspace.uwaterloo.ca/handle/10012/5776?show=full
- Martínez, G., Blandón, J. J., & Lara, L. A. (2022). Amortiguadores de masa sintonizada: Una revisión general. *Revista Politécnica*, 140-168. Obtenido de https://doi.org/10.33571/rpolitec.v18n35a10
- Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2010). Reglamento Colombiano de Construcción Sismo Resistente. Bogotá, Colombia.
- Ministerio de Vivienda, Construcción y Saneamiento. (2020). Norma técnica de edificación NTE-E030 Diseño Sismorresistente. Lima, Perú.
- Montanaro, M. I. (2002). Sistemas de control de vibraciones en estructuras de gran altura. *Informes de la Construcción*(53), 31-39. Obtenido de https://www.researchgate.net/publication/26524464_Sistemas_de_control_de_vi braciones_en_estructuras_de_gran_altura
- Montserrat, N. (2013). Relación entre el período fundamental de vibración y el índice de daño de un edificio de Hormigón Armado. Universidad Politécnica de Cataluña.
- Muñoz, A. (2020). Comentarios a la norma peruana E.030 Diseño Sismorresistente. SENCICO, Lima.
- Oviedo, A. J., & Duque, M. (2006). Sistemas de control de respuesta sísmica en edificaciones. *Revista EIA*, 108.
- Paz, M. (1992). Dinamica Estructural. Editorial Reverté.
- Perez, J. (2007). *Las variables en el método científico*. Obtenido de http://www.scielo.org.pe/pdf/rsqp/v73n3/a07v73n3.pdf
- Rahimi, F., Aghayari, R., & Samali, B. (2020). Application of Tuned Mass Dampers for Structural Vibration Control: A State-of-the-art Review. *Civil Engineering Journal*, 1622-1651. Obtenido de http://dx.doi.org/10.28991/cej-2020-03091571
- Said, E., & Matsagar, V. (2019). Seismic response control of steel benchmark building with a tuned mass damper. *Asian Journal of Civil Engineering*(21), 267-280.Obtenido de https://doi.org/10.1007/s42107-019-00206-1
- Sakr, T. (2015). Vibration control of buildings by using partial floor loads as multiple tuned mass dampers. Obtenido de http://dx.doi.org/10.1016/j.hbrcj.2015.04.004

- Tavera, H. (2020). Análisis y Evaluación de los patrones de sismicidad y escenarios sísmicos en el borde occidental del Perú (Informe técnico N° 004-2020/IGP). Instituto Geofísico del Perú, Lima.
- Tavera, H., & Buforn, E. (1998). Sismicidad y sismotectónica de Perú. *Física de la tierra*(10), 187-219. Obtenido de http://hdl.handle.net/20.500.12816/822
- Tuan, A., & Shang, G. (2014). Vibration Control in a 101-Storey Building Using a Tuned Mass Damper. *Journal of Applied Science and Engineering*, 17(2), 141-156.
- Urrego, P. (2018). Comparación del comportamiento estructural en edificaciones controladas sísmicamente con un amortiguador de masa sintonizada (Tuned mass damper). Tesis de pregrado, Universidad EIA, Antioquía.
- Villalba, P. (2015). *Comparación del análisis modal espectral, lineal y no lineal.*Universidad Central el Ecuador. Obtenido de

 http://www.dspace.uce.edu.ec/bitstream/25000/4238/1/T-UCE-0011-67.pdf

ANEXO A: Cronograma de actividades

Tabla 39 *Cronograma de actividades*

Cronograma de Trabajo								
Procesos	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Elección del tema								
Marco Teórico								
Definición del Problema								
Elaboración de Capítulo I								
Elaboración de Capítulo II								
Elaboración de Capítulo III								
Modelamiento virtual								
Interpretación de Resultados								
Revisión de Borradores								
Transcripción y entrega de Trabajo Final								
Sustentación final								

ANEXO B: Presupuesto

Tabla 40Presupuesto

Descripción	Unidad	Cantidad		P.U	Precio Total	
Materiales y útiles						
De oficina						
Repuestos y accesorios					S/ 9,000.00	
Laptop o PC	UND	2	S/	4,500.00	S/ 9,000.00	
Servicios básicos, comur	nicaciones,	publicidad y d	lifusiór	ı		
Servicio de energía eléct	rica, agua y	gas				
Servicio de energía eléct	rica				S/ 2,400.00	
Luz del sur	MES	6	S/	200.00	S/ 1,200.00	
Luz del sur	MES	6	S/	200.00	S/ 1,200.00	
Servicio de telefonía e internet						
Servicio de internet	S/ 1,800.00					
Internet movistar	MES	6	S/	150.00	S/ 900.00	
Internet movistar	MES	6	S/	150.00	S/ 900.00	

ANEXO C: Matriz de operacionalización de variables

Tabla 41 *Matriz de operacionalización de variables*

Variables	Definición conceptual	Indicadores	Instrumento
	Variable Indeper	ndiente	
Amortiguador de Masa Sintonizada	Espinoza, et. al (2018): El AMS se compone de una masa secundaria conectada a	Razón de Masa	Simulación Virtual en ETABS
	la estructura con un amortiguador y un mecanismo elástico.	Frecuencia del AMS	Norma E030 Diseño Sismorresistente
	Variable Depen	diente	
Comportamiento dinámico de un edificio multifamiliar de 22 pisos	Rochel (2012): indica que el espectro de respuesta nos muestra la respuesta máxima para todo un conjunto de sistemas de un grado de	Aceleración	Simulación Virtual en ETABS
	libertad, expuesto a un solo mismo. Para cada periodo se obtiene el historial de desplazamientos y solo se elige la máxima respuesta absoluta.	Desplazamiento	Norma E030 Diseño Sismorresistente

ANEXO D: Matriz de Consistencia

Tabla 42 *Matriz de consistencia*

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLE INDEPENDIENTE	INDICADORES
¿Cómo realizar el análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo?	Realizar el análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo.	Al realizar el análisis comparativo de un edificio multifamiliar de 22 pisos sin y con la implementación de un amortiguador de masa sintonizada en Surquillo se mejora la respuesta dinámica cuando se implementa el AMS hasta en un 15%.	Implementación y diseño de un amortiguador de masa sintonizada	Razón de masa del AMS Frecuencia del AMS
PROBLEMA ESPECÍFICO	OBJETIVO ESPECÍFICO	HIPÓTESIS ESPECÍFICA	VARIABLE DEPENDIENTE	INDICADORES
¿Cómo diseñar el amortiguador de masa sintonizada a implementar en el edificio multifamiliar?	Diseñar el amortiguador de masa sintonizada a implementar en el edificio multifamiliar.	Conociendo las características de masa, rigidez, frecuencia y amortiguamiento del edificio se diseñará el amortiguador de masa sintonizada		Masa, rigidez, frecuencia y amortiguamiento
¿En qué medida la razón de masa influye en los desplazamientos y derivas de un edificio multifamiliar ubicado en Surquillo?	Comparar la influencia de la razón de masa en términos de desplazamientos y derivas del edificio implementado con el AMS.	Al aumentar la razón de masa hasta un 5% y sintonizar las frecuencias del edificio y el AMS se reduciría los desplazamientos y derivas del edificio hasta en un 25%.	Respuesta dinámica	Desplazamientos y derivas
¿En qué medida la razón de masa influye en las cortantes y aceleraciones de un edificio multifamiliar ubicado en Surquillo?	Comparar la influencia de la razón de masa en términos de cortantes y aceleraciones del edificio implementado con el AMS.	Al aumentar la razón de masa hasta un 5% y sintonizar las frecuencias del edificio y el AMS se reduciría las aceleraciones y cortantes basales del edificio hasta en un 25%.		Aceleraciones y cortantes basales

ANEXO E: Carta de Autorización

Lima, 24 de Octubre de 2023

CARTA DE AUTORIZACION

Mediante la presente se autoriza a Allison Noelia Fukunaga Huapaya, identificada con DNI 73941983 y Gabriel Sebastián Gutierrez Sánchez, identificado con DNI 72217837, al uso de planos y especificaciones técnicas del edificio multifamiliar de 22 pisos ubicado

en el distrito de Surquillo con fines académicos para la elaboración de su tesis.

Atentamente,

Freddy Fukunaga Fuentes

DNI 07724964

81