IMPLEMENTACION DEL LEAN MANUFACTURING PARA REDUCIR LOS PRODUCTOS NO CONFORME EN LAS ÁREAS DE MONTAJE Y ACABADO EN EL RUBRO DE CALZADO

TESIS
PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

PRESENTADA POR

Bach. GUZMÁN VARA, KATHERINE MERCEDES
Bach. SUAREZ OLIN, ALVARO HUGO
ASESOR: DR. VELÁSQUEZ COSTA, JOSE ANTONIO

LIMA – PERÚ

2019
Dedicatoria

Esta tesis la dedico a mis queridos padres por su apoyo incondicional, y en el cielo a mis abuelos que me acompañan en todo momento y logro alcanzado.

Guzmán Vara, Katherine M.

Dedicatoria

Esta tesis la dedico a mis queridos padres por su apoyo incondicional, a los profesores que me apoyaron durante todo este tiempo y a mi querida esposa por estar conmigo en las buenas y en las malas.

Suárez Olin, Alvaro H.
Agradecimiento

El agradecimiento de nuestra tesis principalmente es a Dios, por brindarme salud y a la vez a mis docentes por el apoyo académico.

Guzmán Vara, Katherine M.

El agradecimiento de nuestra tesis principalmente a Jehova, por brindarme salud y a la vez a mis docentes por el apoyo constante.

Suarez Olin, Alvaro H.
ÍNDICE GENERAL

RESUMEN ... xiv

ABSTRACT ... xv

INTRODUCCIÓN .. xvi

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA .. 1

1.1 Descripción y formulación del problema general y específico 1

1.1.1 Formulación del Problema .. 3

1.2 Objetivos de Investigación ... 4

1.2.1 Objetivo general ... 4

1.2.2 Objetivos específicos .. 4

1.3 Delimitación de la investigación: espacial y temporal 5

1.4 Justificación e importancia .. 5

1.5 Viabilidad ... 6

CAPÍTULO II: MARCO TEÓRICO .. 7

2.1 Antecedentes del estudio de investigación .. 8

2.1.1 Las primeras técnicas de optimización productiva 8

2.1.2 Toyota Manufacturing System .. 8

2.1.3 Expansión del Lean Manufacturing System en el resto del mundo 9

2.1.4 El Lean Manufacturing en la actualidad .. 9

2.2 Fundamentos teóricos que sustentan a las hipótesis 10

2.2.1 Lean Manufacturing .. 10
2.3 Bases teóricas vinculadas a la variable o variables de estudio 20

2.4 Definición de términos básicos ... 24

CAPÍTULO III: SISTEMA DE HIPÓTESIS .. 26

3.1 Hipótesis ... 26

3.1.1 Hipótesis general .. 26

3.1.2 Hipótesis específicas .. 26

3.2 Variables ... 26

3.2.1 Definición conceptual de las variables .. 26

3.2.2 Operacionalización de variables ... 27

CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN 29

4.1. Tipo de investigación .. 29

4.2. Método de la investigación .. 29

4.3. Diseño de investigación .. 30

4.4. Población y muestra .. 30

4.5. Técnicas e instrumentos de recolección de datos 33

4.6. Descripción de procedimientos de análisis ... 35

4.6.1. Diagrama de Gantt .. 35

4.6.2. Ishikawa ... 36

4.6.3. Histogramas .. 36

4.6.4. Pareto .. 37

CAPÍTULO V: PRESENTACIÓN Y ANÁLISIS DE RESULTADOS 39
5.3 Representación de resultados .. 39

5.3.1. Estado de la empresa antes de la aplicación de las 5´S .. 39

5.3.2 Flujograma del proceso de montaje y acabado.. 56

5.3.3 DOP del área de montaje y acabado (DOP “Diagrama de Operaciones de
Procesos”) .. 57

CAPÍTULO VI: IMPLEMENTACIÓN DE LAS MEJORAS .. 61

6.3.1. Implementación de las primera S ... 61

6.3.2. Implementación de la Segunda S ... 78

6.3.3. Implementación de la Tercera S .. 105

6.3.4. Implementación de la Cuarta S .. 110

6.3.5. Implementación de la Quinta S .. 118

6.4. Comprobación de hipótesis ... 120

6.4.4. Presentación de resultados .. 129

... 130

CONCLUSIONES .. 137

RECOMENDACIONES .. 138

REFERENCIAS BIBLIOGRÁFICAS .. 139

ANEXOS .. 144
ÍNDICE DE TABLAS

Tabla 1: Seiton-Ordenar ---16
Tabla 2: Seiso-Limpieza ---17
Tabla 3: Seiketsu-Estandarizar --------------------------------------18
Tabla 4: Shitsuke - Disciplina --------------------------------------19
Tabla 5: Variable Dependiente General -------------------------------27
Tabla 6: Variable Dependiente Específica ----------------------------28
Tabla 7 Venta de Hormas en desuso ----------------------------------76
Tabla 8 Resultados de la 1era S ----------------------------------77
Tabla 9 Resultados de la implementación de la 2da S ----------------110
Tabla 10 Datos antes y después de la productividad ------------------120
Tabla 11 Prueba de normalidad de la productividad -------------------121
Tabla 12 Comparativo antes y después de la productividad----------121
Tabla 13 Prueba "T" de la productividad-------------------------------122
Tabla 14 Datos antes y después del tiempo de ciclo------------------123
Tabla 15 Prueba de normalidad del tiempo de ciclo-------------------123
Tabla 16 Comparativo antes y después del tiempo de ciclo----------124
Tabla 17 Prueba "T" del tiempo de ciclo-------------------------------124
Tabla 18 Datos antes y después de los costos de los productos no conforme--125
Tabla 19 Prueba de normalidad de los costos de productos no conforme--------126
Tabla 20 Comparativo de costos de los productos no conforme----------127
Tabla 21 Prueba "T" de los costos de los productos no conforme-------127
TABLA DE FIGURAS

Figura 1 Cantidad de productos no conforme ... 3
Figura 2 Filosofía del Lean Manufacturing ... 12
Figura 3 Herramientas del Lean Manufacturing ... 13
Figura 4 Método de las 5’s .. 14
Figura 5 Resultado de la aplicación de las primera S .. 15
Figura 6 Nivel de confianza del 95% ... 32
Figura 7 Tabla de distribución normal .. 32
Figura 8 Diagrama de Gantt ... 35
Figura 9 Grafico de Ishikawa ... 36
Figura 10 Histogramas .. 37
Figura 11 Diagrama de Pareto ... 38
Figura 12 Insumos no utilizados en el proceso de producción 39
Figura 13 Envases desordenados .. 40
Figura 14 Muestras colocadas en bolsa ... 40
Figura 15 Canastas que contienen los restos de trabajo ... 41
Figura 16 Bolsas esparcidas en el piso .. 41
Figura 17 Bolsas esparcidas en el piso .. 42
Figura 18 Mesas que no son utilizadas en el proceso de producción 42
Figura 19 Plantas colocadas en el piso .. 43
Figura 20 Mesa que obstruye el traslado de los trabajadores 43
Figura 21 Mesa que obstruye el traslado de los trabajadores 44
Figura 22 Colocación de tachuelas sin soporte ... 44
Figura 23 Escobas sin identificación .. 45
Figura 24 Máquina no utilizada .. 45
Figura 25 Pegamentos colocados en el piso ... 46
Figura 26 Pegamentos colocados en el piso ... 46
Figura 27 Mesa de trabajo utilizada por 2 trabajadores .. 47
Figura 28 Hormas dispersadas sin identificación en casilleros 47
Figura 29 Rueda de coches desgastadas ... 48
Figura 30 Estante que contiene plantillas colocadas lejos del trabajador 48
Figura 31 Envases sin rotular .. 49
Figura 32 Envases sin rotular .. 49
Figura 33 Plantillas colocadas en javas ... 50
Figura 34 Limpieza de planta realizado por muchos operarios 50
Figura 35 Envases colocadas encima de una silla ... 51
Figura 36 Envases de tintes sin rotular .. 51
Figura 37 Mesa no utilizada en el área de trabajo ... 52
Figura 38 Coches colocados sin usar en el área de acabado ... 52
Figura 39 Crema colocada en un envase sin herramienta para retirarlo 53
Figura 40 Hormas en java sin ubicación exacta ... 53
Figura 41 Cortes esparcidos en el suelo ... 54
Figura 42 Coches sin mantenimiento .. 54
Figura 43 Hormas sin rotular .. 55
Figura 44 Flujograma del proceso de montaje ... 56
Figura 45 Flujograma del proceso de Acabado .. 56
Figura 46 Diagrama de operaciones de procesos - Línea 1 .. 58
Figura 47 Diagrama de operaciones de procesos - Línea 2 ... 60
Figura 48 Equipo 5´S .. 61
Figura 49 Layout de las áreas de montaje y acabado .. 62
Figura 50 Plan de trabajo proceso de montaje ... 63
Figura 51 Plan de trabajo del proceso de acabado ... 64
Figura 52 Tarjetas rojas ... 65
Figura 53 Flujo de tarjetas rojas .. 66
Figura 81 Hormas clasificadas colocadas en la mesa para su rápida utilización 85
Figura 82 Estructura para fijación de horma .. 85
Figura 83 Escobas identificadas .. 86
Figura 84 Retiro de maquina sin uso .. 86
Figura 85 Reubicación de pegamentos encima de una mesa 87
Figura 86 Tabla de relleno .. 87
Figura 87 Aumento de mesas para el trabajo del personal ... 88
Figura 88 Rotulado de las Hormas ... 88
Figura 89 Rueda de coches .. 89
Figura 90 Reorganización de plantillas ... 89
Figura 91 Envases de tintes organizados ... 90
Figura 92 Rotulado de envases .. 90
Figura 93 Estante de plantillas organizado ... 91
Figura 94 Personal necesario en la actividad de limpieza de planta 91
Figura 95 Estación ordenada y limpia ... 92
Figura 96 Rotulación de envase de tintes .. 92
Figura 97 Reducción de espacio y mesa necesaria para el proceso de sopleteado...... 93
Figura 98 Cambio de coches entre áreas .. 93
Figura 99 Cucharon para facilitar la obtención de la crema 94
Figura 100 Estructura de apoyo para colocación de hormas de aluminio 94
Figura 101 Cortes ubicados en una sola sección ... 95
Figura 102 Mantenimiento y rotulado de coches ... 95
Figura 103 Rotulado e identificado de hormas .. 96
Figura 104 Cableado en las áreas de montaje y acabado ... 96
Figura 105 Especificaciones para la obtención de hormas 97
Figura 106 Cuaderno de control de hormas .. 97
Figura 108 Zona de no conformes .. 97
Figura 107 Zona de no conformes por área.. 97
Figura 109 Control de cortes y plantas... 98
Figura 110 Rotulado del área de montaje... 98
Figura 111 Rotulado de los procedimientos previos de las líneas de producción...... 99
Figura 112 Caja de herramientas.. 99
Figura 113 Líneas amarillas en zona de trabajo.. 100
Figura 114 Estructura de control de talón... 100
Figura 115 Muestrario de no conformes .. 101
Figura 116 Formato de capacitación de colaboradores nuevos............................ 101
Figura 117 Estándar de limpieza de los colaboradores.. 103
Figura 118 Planilla de la implementación de la Segunda S 103
Figura 119 Plan de actividades de las 5S .. 105
Figura 120 Flujo de la tercera S ... 105
Figura 121 Plan de trabajo de las tarjetas verdes .. 106
Figura 122 Plan de trabajo de la tercera S.. 106
Figura 123 Registro de las tarjetas verdes.. 107
Figura 124 Indicador de cumplimiento del estándar de limpieza.......................... 107
Figura 125 Plan de acción de las tarjetas verdes ... 108
Figura 126 Tipo de LUP... 108
Figura 127 Indicador de cumplimiento de implementación LUP 109
Figura 128 Molde de herramientas.. 111
Figura 129 Capacitación con los líderes 5s ... 112
Figura 130 Cumplimiento de estándar de inspección.. 113
Figura 131 Plan de trabajo - Programa 5s ... 114
Figura 132 Armario de limpieza y EPP.. 115
Figura 133 Zona de herramientas.. 115
Figura 134 Caja de accesorios.. 116
Figura 135 Gestión Visual
Figura 136 Estándar de limpieza del personal
Figura 137 Estándar de la 4ta S
Figura 138 Auditoria de la Cuarta S
Figura 139 Gráfico de resultado y desempeño operacional
Figura 140 Auditoria de la Quinta S
Figura 141 Resumen de evaluación a trabajadores en el área de montaje
Figura 142 Resumen de evaluación a trabajadores en el área de acabado
Figura 143 Formato de talla de zapatos
Figura 144 Talla de código de cueros
Figura 145 Tabla de códigos de colores
Figura 146 Resumen de acabados
Figura 147 Tiempo de trabajo en el área de montaje
Figura 148 Tiempo de trabajo en el área de acabado
Figura 149 Check List de evaluación interna de reclamo N°1
Figura 150 Check List de evaluación interna de reclamo N°2
La tesis de investigación se encuentra enfocada en estructurar e implementar una herramienta del Lean Manufacturing, en una empresa de fabricación de calzado, esta metodología de mejora nos ayudó a reducir los Productos No Conforme, aplicando la 5s en el área de Montaje y Acabado, siendo estas dos áreas las últimas del proceso productivo lineal, realizando en el área de Montaje el armado del corte y en el Área de Acabado, propiamente dicho el acabado por tipo de cuero, en dichas áreas mencionadas se eliminó los tiempos muertos del proceso productivo en dichas áreas.

Por motivo que en al Área de Montaje y acabado se encontraban desordenadas, generando tiempos improductivos dentro del proceso, como búsquedas de herramientas, desplazamientos innecesarios, falta de estandarización en el proceso.

El objetivo de la aplicación del Lean Manufacturing fue reducir la cantidad y los costos de los Productos no Conforme para incrementar la productividad de las áreas, obteniendo una mejora en la eficiencia en el flujo del proceso que permitan a la empresa ser más competitivos en el mercado.

Palabras Clave: Lean Manufacturing, mejora de procesos, 5s, Producto No Conforme, productividad, costos.
The research thesis is focused on structuring and implementing a Lean Manufacturing tool, in a shoe manufacturing company, this improvement methodology will help us reduce Non-Conforming Products, applying the 5s in the area of Assembly and Finishing, being These two areas are the last of the linear production process, in the Assembly area the assembly of the cut and in the Finishing Area, proper finishing by type of leather, in said mentioned areas the downtimes of the production process in said areas will be eliminated areas.

For the reason that in the Assembly and Finishing Area they are disorderly, generating downtimes within the process, such as tool searches, unnecessary displacements, lack of standardization in the process,

The objective of the application of Lean Manufacturing is to reduce the quantity and costs of Non-Conforming Products and increase the productivity of the areas, obtaining an improvement in the efficiency of the process flow that will allow the company to be more competitive in the market.

Keywords: Lean Manufacturing, process improvement, 5s, Nonconforming Product, productivity, costs.
INTRODUCCIÓN

La presente investigación busca implementar el Lean Manufacturing en la empresa Calimod debido a que existe una gran cantidad de productos no conforme mensualmente afectando a la productividad, el tiempo de ciclo y los costos elevados del calzado en mal estado.

En el capítulo I: Planteamiento del Problema, se presentará la descripción de la problemática de la investigación, el problema general y secundario, problema general, problemas secundarios, el objetivo general y secundario, objetivo general, y objetivos secundarios y delimitación de la investigación.

En el capítulo II: Marco Teórico, se presenta los antecedentes del estudio de investigación, las bases teóricas vinculadas a la variable o variables de estudio, y definición de términos básicos.

En el capítulo III: Sistema de Hipótesis se muestra la hipótesis principal, y las hipótesis secundarias, variables.

En el capítulo IV: Metodología de la Investigación, tipo de investigación, nivel de investigación, diseño de investigación, enfoque de investigación, población y muestra, técnicas e instrumentos de recolección de datos, tipos de técnicas e instrumentos de recolección de datos.

En el capítulo V, se muestra la presentación y análisis de resultados de la investigación, en este capítulo se puede observar el estado de las áreas de acabado y montaje antes de la implementación y después de la implementación.
En el capítulo VI, se muestra conclusiones y recomendaciones. El análisis de resultados. Luego se presentan las y finalmente las fuentes bibliográficas y los anexos.

Respecto a responsabilidad ético – profesional, Nuestra investigación contó con las autorizaciones respectivas de las autoridades correspondientes de la empresa Calimod para la realización de la investigación. El estudio es real y original. Se tuvo la prudencia de mantener en el anonimato de los trabajadores. Los datos son reales y obtenidos por la base de datos que maneja la empresa Calimod.
CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1 Descripción y formulación del problema general y específico

Es una empresa peruana con más de 50 años de trayectoria en el mercado nacional, que constantemente realiza innovaciones en sus productos, con la finalidad de brindar calzados de: calidad, moda, confort y diseños para cada momento, teniendo como línea productiva los zapatos sport y de vestir, con sistemas de armado, Cementado, Cementado Vestir, Strobell, Zamora y Embolsado, utilizando como materia prima principal el Cuero.

La visión de esta empresa consiste en ser Líderes a nivel nacional y protagonistas en Sudamérica en la fabricación y comercialización de calzados y complementos, diferenciados y competitivos, enfocados en el cliente y en una cadena de valor apoyados en la tecnología e innovación mientras que su misión es ser una empresa del rubro de calzado, que genera desarrollo para nuestros colaboradores y valor a los proveedores y clientes a través de la fabricación y comercialización de productos que satisfacen las exigencias del mercado.

En la actualidad la empresa se ve afectada por un aumento en la cantidad de reprocesos (rechazos) que tenemos de nuestros principales clientes, que afecta a la rentabilidad de nuestra empresa. Esta problemática se genera debido a las faltas de control en el sistema productivo, por parte de los supervisores de producción en temas de seguimiento y control, y a la vez por los inspectores de calidad ya que no capacitan constantemente al personal; lo que deriva a que ocurran defectos en el calzado, evidenciando una alta tasa de PRODUCTO NO CONFORME en el área de producción, siendo por factores operativos y desperdiciando materia prima importante como el cuero.
Estos problemas internos influyen en la satisfacción de los clientes, haciendo que puedan dejar de consumir la marca y debido al enorme mercado de calzados en Lima, hasta puede llegarse a perder a los consumidores fieles además del aumento de costos de producción por motivos de reprocesos, lo cual se relaciona directamente con la productividad. Esta cuestión se origina en el Área de Producción en vista que existen algunos operarios que no saben manipular correctamente la materia prima empleada para realizar los calzados perjudicando toda la línea productiva.

Nos encontramos en una época donde el mundo está totalmente globalizado lo cual influye en todas las empresas ya que el producto que ofrecen puede verse potenciado enormemente por una publicidad gratuita siempre y cuando satisfagan las necesidades de los clientes.

La empresa ha logrado posicionarse en el mercado, porque ofrece calzados de alta calidad y puede perjudicarse enormemente por una crítica directa a su producto y verse mermada su capacidad de captar nuevos clientes potenciales lo cual conlleva a una reducción drástica en sus ingresos además que los clientes fieles pueden empezar a cuestionar la calidad del calzado que ofrecen.

Por otro lado, el aumento de los reprocesos por una mala coordinación por parte de las secciones de calidad y producción, por falta de capacitación hacia los operarios da como resultado un decremento de los indicadores de productividad de la empresa.

En esta investigación nos enfocamos en las áreas de acabado y montaje porque son los procesos finales que se realizan para elaborar el calzado, por ende, el reproceso sale más caro en esta etapa productiva.
Finalmente, luego del sustento presentado en los párrafos anteriores se pueden plantear los siguientes problemas:

- Aumento de productos no conforme
- Reducción de la productividad
- Aumento de los costos de producción

La figura 1 nos muestra la cantidad de productos no conforme generados en las áreas de montaje y acabado durante los meses trabajados.

1.1.1 Formulación del Problema

1.1.1.1 Problema general

a) ¿En qué medida la aplicación del “Lean Manufacturing” en una empresa de rubro de calzado, reduce la cantidad de productos no conforme?
1.1.1.2 Problemas específicos

a) ¿En qué medida la aplicación del “Lean Manufacturing”, mejora la productividad en una empresa de rubro de calzado?

b) ¿En qué medida la aplicación del “Lean Manufacturing”, mejora el tiempo de ciclo en una empresa de rubro de calzado.

c) ¿En qué medida la aplicación del “Lean Manufacturing”, reduce los costos de productos no conforme en una empresa de rubro de calzado?

1.2 Objetivos de Investigación

1.2.1 Objetivo general

a) Aplicar el “Lean Manufacturing” en una empresa de rubro de calzado, para reducir la cantidad de productos no conforme.

1.2.2 Objetivos específicos

a) Aplicar el “Lean Manufacturing” para mejorar la productividad en una empresa de rubro de calzado.

b) Aplicar el “Lean Manufacturing” para mejorar el tiempo de ciclo en una empresa de rubro de calzado.

c) Aplicar el “Lean Manufacturing” para reducir los Costos de Productos no conforme en una empresa de rubro de calzado.
1.3 Delimitación de la investigación: espacial y temporal

a) Espacial: El trabajo de investigación se realizará en las áreas de montaje y acabado en una empresa de rubro de calzado ubicada en la ciudad de Lima, en la Av. Industrial 150, Ate.

1.4 Justificación e importancia

La investigación propuesta busca, mediante la aplicación del “Lean Manufacturing”, utilizando específicamente la herramienta 5’s reducir los productos no conforme, mediante la reducción de los indicadores en tiempo de ciclo, costos por reproceso y el aumento de la productividad en una empresa de rubro de calzado. De acuerdo con los objetivos de estudio, su resultado permite reducir los indicadores en tiempo de ciclo, costos por reproceso y el aumento de la productividad en una empresa de rubro de calzado.

La importancia de este trabajo de investigación es reducir la cantidad de productos no conforme ya que al reducirlas se obtiene mayor capacidad de producción, captación de clientes por tema de costo y tiempo de entrega, lo cual la empresa se mantiene competente en el mercado.
1.5 Viabilidad

El presente trabajo de investigación es viable por los siguientes motivos presentados:

a) La población de estudio, fueron los meses de producción de calzado, tomando como meses de estudio desde Enero hasta Agosto del 2018 antes de la implementación y desde Enero hasta Agosto del 2019 como los resultados obtenidos después de la implementación.

b) Diagnóstico Actual de la Empresa

c) La data es ingresada, por un inspector y revisada por el analista de control de calidad antes de ser confirmada en el sistema.

d) Se utilizaron las siguientes herramientas de calidad: Pareto, Ishikawa y Control de procesos, para tener un diagnostico actual y compararlo con nuestros resultados.
CAPÍTULO II: MARCO TEÓRICO

La metodología del Lean Manufacturing es una gestión enfocada en reducir las pérdidas realizadas por los sistemas de manufactura además de aumentar la creación del valor para el cliente.

Este modelo surge como respuesta hacia una búsqueda por implementar mejoras de fabricación siendo adoptada por las empresas japonesas, las cuales obtuvieron mejorar los resultados tanto en puestos de trabajo como en las líneas de fabricación.

Hernández, J; Vizán, A (2013) Señalan: “La metodología del Lean Manufacturing nace en el sistema de producción Just in Time (JIT) originado en el año 50 por la empresa automovilística Toyota” (p. 8).

Umba, N; Duarte, J (2017) Señalan: “La filosofía del lean manufacturing busca eliminar las actividades que no generan valor para los clientes, aplicando la filosofía y sus herramientas se logra suprimir las diferentes clases de desperdicios que Lean reconoce” (p.21).

Chávez, C; Méndez, J (2014) Señalan: “Se pueden rastrear los orígenes de la Manufactura Lean en la industria japonesa a finales de la Segunda Guerra Mundial. En aquel momento Kiichiro Toyoda, fundador de Toyota Motor Company, se dio cuenta de que la productividad de los obreros americanos era nueve veces mayor que la de los obreros japoneses, tenían que alcanzar a Estados Unidos en tres años, o se verían desplazados por los americanos para siempre” (p.21).
2.1 Antecedentes del estudio de investigación

2.1.1. Las primeras técnicas de optimización productiva

Ruiz, J (2016) en su tesis para optar al grado de magister para la Universidad de Sevilla señala: “En definitiva, se trataba de buscar nuevas técnicas y acciones para una mejora en la producción en masa de grandes cantidades de producto mediante el empleo” (p.24).

Chávez, C; Méndez, J (2014) En su tesis para optar al título profesional de ingeniero mecatrónico para la Universidad Nacional Autónoma de México señalan: “Este concepto de eliminar los desperdicios es el motor de los trabajos de Taiichi Ohno en Toyota quien se dedicó sistemáticamente a encontrar y eliminar las causas de dichos desperdicios” (p.21).

2.1.2 Toyota Manufacturing System

Arrieta, J; Muñoz, J; Echeverri, A; Gutiérrez, S (2011) En su tesis sobre la aplicación lean Manufacturing en la industria colombiana señalaron: “El conjunto de técnicas desarrolladas por la compañía Toyota alrededor de año de 1950 sirvieron para mejorar y optimizar los procesos operativos de todo tipo de compañía industrial”. (p.3).

Jimenez, M (2016) En su tesis para optar al título profesional de tecnólogo industrial para la Universidad Distrital Francisco José de Caldas señala: “La filosofía del Lean Manufacturing origina un ambiente de mejora continua siempre tomando como importancia la satisfacción del cliente, convirtiéndose el hoy por hoy una de las herramientas más usadas, a la vez eficientes y muy flexibles para poder afrontar el entorno competitivo y cambiante” (p.30).
2.1.3 Expansión del Lean Manufacturing System en el resto del mundo

Guevara, E; Zegarra, R (2015) En su tesis para optar al título profesional de ingeniero industrial para la Universidad Ricardo Palma señala: “El sistema de Manufactura Esbelta se basa en la eliminación de todo tipo de Muda o desperdicio. Que es todo aquello que no agrega valor para el cliente. El respeto por el trabajador es fundamental, así como lo es la mejora continua no solo en productividad, sino también en calidad.” (p.12)

2.1.4 El Lean Manufacturing en la actualidad

Paz, M (2016) En su tesis para optar al título profesional de ingeniero civil mecánico para la Universidad Técnica Federico Santa María señala: “Las empresas que basan su gestión en el modelo Lean, buscan lograr mayor eficiencia y competitividad, implantando procesos que añadan valor al producto con el mínimo empleo de recurso. El valor agregado es todo aquello que incrementa la forma del producto o la función, del producto o servicio” (p.1).

Hernández, J; Vizán, A (2013) En su informe sobre Lean Manufacturing conceptos, técnicas e implantación para la escuela de organización industrial señalan: “Actualmente las empresas industriales se enfrentan al reto de buscar e implantar nuevas técnicas organizativas y de producción que les permitan competir en un mercado global” (p.6).
2.2 Fundamentos teóricos que sustentan a las hipótesis

2.2.1. Lean Manufacturing

El Lean Manufacturing es un conjunto de herramientas enfocadas a eliminar aquellos procesos que no generen valor al producto, proceso o servicio, buscando así la reducción de costos, satisfaciendo las necesidades de los clientes y mejorando la rentabilidad de la empresa.

La filosofía lea provee una manera de hacer más con menos; menor esfuerzo humano, menos equipo, menos tiempo, menos espacio, acercándose más a lo que los clientes piden con mayor exactitud. Tiempos atrás la producción en masa controlaba la filosofía de manufactura de las empresas productoras.

Eso genera que existan grandes almacenes donde colocar la materia prima, partes y producto terminado. Por lo tanto, se generaban altos costos de inventario y uso de espacios inmensos para la masificación de la producción.

Para vencer todos estos obstáculos planteados generados por la producción en masa la industria japonesa cayó en la obligación de buscar nuevos planteamientos productivos.

Toyota y su Director de Producción Taiichi Ohno emprendieron esta búsqueda dando como resultado el famoso Toyota Production System. Punto de inflexión de la industria manufacturera hacia una filosofía que buscaba todo lo contrario. Reducir. Hacer un proceso más Lean.

“A inicios de 1950 una reducción de las ventas empujo a Toyota a despedir a una gran parte de la mano de obra luego de una larga huelga."
En ese momento, dos jóvenes ingenieros de la empresa, Eiji Toyoda (sobrino de Kiichiro) y Taiicho Ohno, al que se le considera el padre del Lean Manufacturing, visitaron las empresas automovilísticas americanas.

En esos momentos el sistema americano respaldaba la reducción de costes realizando autos en masa sin diversidad de modelos. Se dieron cuenta que el sistema de los americanos no era posible de implementar en Japón y que en el futuro Observaron que el sistema rígido americano no era aplicable a Japón y que en el futuro sería necesaria fabricar autos pequeños en grandes variedades.

Luego de realizar una investigación llegaron a la conclusión que esto no sería posible suprimiendo stocks y toda una serie de derroches, incluyendo el aprovechamiento de las capacidades humanas.” (Hernández, J; Vizan, A, 2013, p.13)

El sistema de Manufactura Esbelta se enfoca en la eliminación de Muda o desperdicio. Muda significa que no añade valor para el cliente

Se toma como fundamental el enfoque a la mejora continua, `productividad y calidad. Beneficios de la filosofía Lean y fueron comprobados con resultados óptimos en Toyota, según Shingo (1993), son:

- Los desperdicios se reducen
- El inventario y espacio se reducen
- Flexibilidad en el sistema productivo
- Reducción en costos de producción
- Reducción en tiempo de entrega
- Maquinarias más eficientes
- Reducción de la muda
La definición de la Muda no añade valor al producto, proceso o servicio. Es una actividad que consume recursos de la línea de producción, pero que no añade valor ante los requerimientos del cliente. La Muda es una pérdida o desperdicio que se encuentran en los procesos productivos. (Shingo, 1993, p.213)[…] Identifica siete tipos de Muda:

- Sobreproducción
- Tiempo de espera
- Transporte innecesario
- Sobre procesamiento
- Exceso de Inventario
- Movimiento innecesario
- Producto Defectuoso (p.214)

La filosofía de trabajo del Lean Manufacturing, está basada en las personas, con la finalidad de optimizar y mejorar el sistema de producción, teniendo como finalidad identificar, eliminar y reducir los desperdicios dentro del proceso productivo. (Hernández, Vizán, 2013, p.11)

La figura 2 nos muestra las etapas que siguen los productos a través del Lean Manufacturing, teniendo como finalidad eliminar los desperdicios del proceso.

Figura 2 Filosofía del Lean Manufacturing

2.2.2. Herramientas lean manufacturing

La eliminación de los desperdicios y procesos que no añaden valor, usan las herramientas como objetivo de mejorar las operaciones de manera continua eliminando desperdicios, pero siempre respetando al trabajador.

Figura 3 Herramientas del Lean Manufacturing

Fuente: Instituto de Productividad Empresarial Aplicada (2017)

La figura 3 nos muestra las diversas herramientas que componen la filosofía del Lean Manufacturing, como por ejemplo del 5S, Poka Yoke, VSM, Kanban, Jidoka, etc.

A continuación, describiremos las herramientas que usaremos en la investigación.

2.2.2.1. Las 5S

Gonzáles, J (2013) Señala: “La metodología de las 5´S es una herramienta utilizada para organizar, ordenar, limpiar, estandarizar y crear lugares de trabajo en óptimas condiciones para poder laborar en el área de producción, almacenes con finalidad de obtener mayor espacio y mejor ubicación de las cosas ya que por consecuencia se reduce los tiempos en búsqueda y fácil acceso a los suministros” (p.5).
Gonzáles, J (2013) Señala: “La implementación de la herramienta 5´S, mejora las condiciones del trabajador, lo cual se impacta directamente en el incremento de la productividad” (p.5).

Algunos de los objetivos que pretende la metodología son:

a) Mejorar las condiciones laborales en la organización. El ambiente de trabajo se encuentra limpio y ordenado tiene un gran impacto en el lado emocional de trabajador

b) Minimizar gastos en tiempo perdido, como por ejemplo localizar las herramientas de trabajo, las tareas se efectúan con mayor rapidez.

c) Reducir la probabilidad de accidentes en el trabajo y mejora de seguridad en el trabajo.

La figura 4 se muestra las 5s; Seiri-Clasificar (1s), Seiton-Orden (2s), Seiso-Limpiar (3s), Seiketsu-Estandarizar (4s), Shitsuke-Disciplina (5s)

Figura 4 Método de las 5´s

Fuente: Elaborado por los autores
2.2.2.2. Seiri – Clasificar:

La definición de Seiri es identificar, clasificar y separar los materiales de lo necesarios e innecesarios. Usualmente en los ambientes de trabajo se hacen tan rutinarios que se acumulan materiales, herramientas, etc., que la vez pueden estar incluidos cosas que realmente se requiere, pero se ven ocultas entre cosas innecesarias, lo cual ocasiona una pérdida de tiempo en la búsqueda de objetos que se necesitan, también genera falta de espacio, mala condición de trabajo que puede generar accidentes u estrés laboral por el lugar o espacio de trabajo del día a día.

(Flores, N; Gutiérrez, Y; Martínez, Y; Maycot, M, 2015, p.15)

Figura 5 Resultado de la aplicación de las primera S

Fuente: Elaborado por Raúl Sejzer (2019)

La figura 5 nos muestra los resultados que se obtienen luego de implementar la primera S, describiendo la imagen izquierda con objetos innecesarios y generando desorden en el puesto de trabajo y en la imagen derecha se visualiza un lugar de trabajo espacioso y de mejor ambiente laboral.
2.2.2.3. Seiton – Ordenar

El significado de Seiton, se enfoca en ordenar o ubicar e identificar los materiales necesarios, de forma de encontrarlos fácilmente y rápidamente, es una mejora visual de los materiales.

Eliminando los materiales u elementos innecesarios, se busca o identifica un lugar donde ubicarlos de forma estratégica debido a lo que más se usa debe estar en lugares más fácil de alcanzar. (Fernández, B; Morales, C, 2018, p.22)

Tabla 1: Seiton-Ordenar

<table>
<thead>
<tr>
<th>OBJETIVO</th>
<th>BENEFICIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Cada objeto o material esté en su lugar y se defina un solo lugar para cada objeto o material.</td>
<td>- Tiempos de búsqueda eliminados</td>
</tr>
<tr>
<td></td>
<td>- Velocidad de respuesta</td>
</tr>
<tr>
<td></td>
<td>- Mejorar la seguridad</td>
</tr>
<tr>
<td></td>
<td>- Minimizar errores</td>
</tr>
<tr>
<td></td>
<td>- Eliminación de pérdidas por errores</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 1 nos muestra los objetivos y los beneficios de la segunda S, en cual consiste en limpiar el área de trabajo.

2.2.2.4. Seiso – Limpieza

La definición de Seiso, se enfoca en la limpieza, lo cual se identifica y elimina fuentes de contaminación o suciedad, cuidando que los lugares de trabajo se encuentren en buen estado, con la finalidad de una persona requiera un objeto, este pueda estar listo para su uso. (Lean Solutions, 2015,p.56)
“La terminología de limpieza es una regla de costumbres habituales en el trabajo japonés, que lo aplican en su día a día antes de comenzar su jornada laboral y al término de la jornada” (Bortolotti, S, 2014, p.20).

<table>
<thead>
<tr>
<th>OBJETIVO</th>
<th>BENEFICIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Mantener limpia el área de trabajo y establecer una metodología de limpieza que evite que el área de trabajo se ensucie y afecte la productividad.</td>
<td>-Un lugar impecable de trabajo.</td>
</tr>
<tr>
<td></td>
<td>-Tomar acciones correctivas inmediatas.</td>
</tr>
<tr>
<td></td>
<td>-Incrementa la vida útil de los equipos, herramientas y demás objetos de trabajo.</td>
</tr>
<tr>
<td></td>
<td>-Disminuir reparaciones caras.</td>
</tr>
<tr>
<td></td>
<td>-Aumenta la funcionalidad del equipo.</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 2 nos muestra los objetivos y los beneficios de aplicar la tercera S, en aspecto económico, ambiental y productivo.
2.2.2.5. Seiketsu – Estandarizar

Este paso es la interacción de las actividades que se ejecutan en los pasos ordenar, separar y limpiar ya aplicados previamente. Comprobada la efectividad de las normas establecidas en los pasos ya mencionados, estas se estandarizan para que perduren en el tiempo. Estas normas se difunden por medio de controles visuales. Se controla de forma visual el sistema de comunicación mediante el cual se observa en imágenes que transmiten mensajes claros y precisos que permiten conocer, ubicar y recordar normas. (Becerra, K; Carbajal, X, 2019, p.22)

Tabla 3: Seiketsu-Estandarizar

<table>
<thead>
<tr>
<th>OBJETIVO</th>
<th>BENEFICIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poder visualizar rápida y claramente las situaciones anómalas.</td>
<td>-Crea un ambiente propicio para desarrollar el trabajo.</td>
</tr>
<tr>
<td></td>
<td>- Mejora el bienestar del personal al crear un hábito de conservar impecable el sitio de trabajo en forma permanente.</td>
</tr>
<tr>
<td></td>
<td>- Se evitan errores que puedan conducir a accidentes o riesgos laborales innecesarios.</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 3 nos muestra los objetivos y los beneficios de aplicar la cuarta S (estandarización) esta se cumple si se mantiene las 3 primeras S, creando un hábito de trabajo, se logra la estandarización.
2.2.2.6. Shitsuke – Disciplina

Se genera ambiente laboral de mejora continua basándose en el ciclo de Deming (planear, hacer, verificar y actuar). Esta S es importante para que las 4 S previas tengan una razón para ser aplicadas.

Se realizan inspecciones comparando la situación actual de empresa con situaciones anteriores previas a la implementación de la 5 S.

Según los resultados comparativos, se hacen las modificaciones necesarias para mejorar aún más la productividad de la empresa.” (Flores, E, 2017, p.7)

Tabla 4: Shitsuke - Disciplina

<table>
<thead>
<tr>
<th>OBJETIVO</th>
<th>BENEFICIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crear hábitos que se basen en 4S anteriores (Clasificar, Ordenar, Limpiar y Estandarizar).</td>
<td>-Se crea una cultura de sensibilidad, respeto y cuidado de los recursos de la empresa.</td>
</tr>
<tr>
<td></td>
<td>-Se siguen los estándares establecidos y existe una mayor sensibilización y respeto entre personas.</td>
</tr>
<tr>
<td></td>
<td>-El cliente se sentirá más satisfecho ya que los niveles de calidad serán superiores debido a que se han respetado íntegramente los procedimientos y normas establecidas.</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 4 nos muestra los objetivos y los beneficios de aplicar la quinta S, (disciplina), esta S tiene como finalidad la cultura de sensibilidad entre los involucrados, y que beneficios obtiene el trabajador, la empresa y los clientes.
2.3 Bases teóricas vinculadas a la variable o variables de estudio

Gammarra, M (2019) en la Universidad Nacional Mayor de San Marcos, en Lima, Perú, investigó sobre la Aplicación del Lean Manufacturing, para la mejora de la productividad en una empresa manufacturera. Plantearon como objetivo general la aplicación del Lean Manufacturing, para la mejora de la productividad en una empresa manufacturera. Entre sus conclusiones destacan:

a) La implementación del Lean Manufacturing ayuda y da excelentes resultados para poder llegar al éxito u objetivos planteados. Esta metodología se aplica a diferentes sectores en realidades distintas entre las empresas.

b) El Lean Manufacturing tiene como base varias técnicas y herramientas que están enfocadas en la mejora de procesos con la finalidad de reducir todo tipo de desperdicios (P.4).

Baluis, C (2013) en la Pontificia Universidad Católica Del Perú, en Lima, Perú, investigó sobre la Optimización de procesos en la fabricación de termas eléctricas utilizando herramientas de Lean Manufacturing. Plantearon como objetivo general la optimización de procesos en la fabricación de termas eléctricas utilizando herramientas de Lean Manufacturing. Entre sus conclusiones destacan:

a) Se utilizó el Value Stream Mapping (VSM), con los principales indicadores para analizar y controlar los tiempos de ciclos, a la vez los inventarios, el tiempo que se demora en cambiar los moldes y disponibilidad de máquinas.
b) El sistema Kanban ayudará a controlar y definir los adecuados niveles de inventario, con la implementación del SMED se buscará reducir el tiempo de set-up en los cambios de moldes.

c) La evaluación de la viabilidad en las implementaciones de las metodologías con sus respectivas herramientas de mejora, teniendo como resultados un VAN positivo y un TIR superior al 20%. (P.1).

Hualla, R; Cardenas, C (2017) En la Pontificia Universidad Católica Del Perú, en Lima, Perú, investigó sobre la Mejora de procesos en las áreas de mezclado y molienda de una empresa manufacturera de tubo sistemas pvc y pead aplicando herramientas de calidad y Lean Manufacturing. Plantearon como objetivo general la mejora de procesos en las áreas de mezclado y molienda de una empresa manufacturera de tubo sistemas pvc y pead aplicando herramientas de calidad y Lean Manufacturing. Entre sus conclusiones destacan:

a) La aplicación de las 5’s fue el punto de inflexión para iniciar la estandarización de los procesos, se inculcó una nueva cultura de trabajo tanto al personal operativo y a las gerencias medias y altas, sin el apoyo de estas últimas hubiera sido imposible llevar adelante estas y las demás herramientas Lean. (P.135).

En seguida se presentan las siguientes investigaciones internacionales que están relacionadas con la investigación:
Ochoa, I; López, J (2012) En la Universidad ICESI, Colombia, investigó sobre EL Rediseño de un sistema productivo utilizando herramientas de Lean Manufacturing. Caso de estudio sector de mezclas de ingredientes para panadería industrias xyz. Plantearon como objetivo general Elaborar un plan de mejoramiento para el rediseño del sistema productivo de la línea de panadería de Industrias XYZ utilizando herramientas de Lean Manufacturing. Entre sus conclusiones destacan:

a) Para implementar este tipo de herramientas se debe tener una relación muy cercana con los proveedores. Es importante especificar los cambios en la forma de compra y en los tiempos de entrega, y definir si los proveedores están dispuestos a aceptar estos cambios.

b) Para extender el modelo se recomienda integrar en el mediano plazo a los proveedores, clientes y toda la cadena de distribución en un sistema Lean. De esta manera se logrará el mínimo inventario, el más alto nivel de servicio y la mayor rentabilidad de toda la cadena de abastecimiento.

(p.67)

Bernal, S; Camilo, J (2018) En la Universidad de San Buenaventura, Colombia, investigó sobre Estrategias Lean Manufacturing para una empresa del sector metalmecánico. Plantearon como objetivo general Elaborar un plan de mejoramiento para una empresa del sector metalmecánico utilizando estrategias de Lean Manufacturing. Entre sus conclusiones destacan:
a) La implementación de esta metodología ayudará a que mejore la productividad de la empresa, debido a que el Lean se apoya también de la mejora continua de los procesos productivo de las empresas como también la aplicación definitiva de las herramientas. (p.78)

Renda, D (2015) En la Universidad de Vigo, España, investigó sobre la Integración de modelos de fabricación mediante simulación con herramientas informáticas y lean manufacturing. Plantearon como objetivo general Realizar la Integración de modelos de fabricación mediante simulación con herramientas informáticas y lean Manufacturing. Entre sus conclusiones destacan:

a) La parametrización de los diferentes KPI relevantes como; Lead Time, Take Time, OEE, etc. Permite mediante la integración en el Software SIMIO poder evaluar el comportamiento de un sistema, de manera que se pueda tomar la decisión correcta a la hora de hacer cambios, planteamientos o valoraciones de diferentes alternativas.

b) La revisión del estado del arte inicial con las bases teóricas existentes ha permitido analizar y definir diferentes softwares de simulación DES. Y definir cuál es el más versátil para el desarrollo de la investigación que en este caso ha sido el SIMIO. (p.57)
2.4 Definición de términos básicos

2.4.1. Lean Manufacturing: “Se define al Lean Manufacturing o producción ajustada, a la búsqueda del mejoramiento de los sistemas de producción, eliminando los despilfarros (desperdicio de recursos), el cual no agregan valor al producto y por ende al cliente.” (Meléndez, D, 2017,p.8)

2.4.2. Esperas: “Tiempo de inactividad por el personal, material, maquinaria, mediciones e información.” (Castrejón, A, 2016, p.22)

2.4.3. Movimientos: “Cualquier movimiento de la gente (o maquinaria o equipo) que no agrega valor al producto o servicio.” (Castrejón, A, 2016, p.22)

2.4.4. Transporte: “Transporte de información, partes o materiales alrededor de la instalación. Este desperdicio consiste en el transporte de materiales que no aportan realmente al sistema de producción.” (Castrejón, A, 2016, p.22)

2.4.5. Productividad: “Tradicionalmente la productividad total de la empresa, se ha visualizado como una razón matemática entre el valor de todos los productos y servicios fabricados o prestados y el valor de todos los recursos utilizados en hacer el producto o prestar el servicio, en un intervalo de tiempo dado.” (Curillo, M, 2014, p.9)

2.4.6. Metodología 5S: “Las 5S’s es un modelo japonés que volver la clasificación, el orden, la limpieza, la estandarización y la mejora continua en un habito de trabajo, mejorando la cultural.” (Florez, N; Gutiérrez, Y; Martínez, Y; Maycot, M, 2015, p.14)

2.4.7. Trabajo Estándar: “Conjunto de procedimientos de trabajo que establecen el mejor método y secuencia para cada proceso.” (Guevara, E; Zegarra, R, 2015, p.18)
2.4.8. Satisfacción del cliente: “Es el resultado de la valoración que reciba sobre la calidad percibida en el servicio o el producto entregado por la empresa.” (Arrascue, J; Segura, E, 2016, p.69)

2.4.9. Tiempo de ciclo: “Se define como el tiempo que toma procesar una unidad, lote o tarea, ya que puede ser también relacionado a un servicio, por lo cual es aquel tiempo transcurrido desde que se comienza la primera actividad hasta la última necesaria para obtener el bien o servicio especificado.” (Zapata, A; Acevedo, C, 2018, p.56)
CAPÍTULO III: SISTEMA DE HIPÓTESIS

3.1 Hipótesis

3.1.1 Hipótesis general

a) La aplicación del Lean Manufacturing contribuye significativamente en la reducción de productos no conforme en una empresa de rubro de calzado.

3.1.2 Hipótesis específicas

a) La aplicación del Lean Manufacturing contribuye significativamente en la mejora de la productividad en una empresa de rubro de calzado.

b) La aplicación del Lean Manufacturing contribuye significativamente en la mejora del tiempo de ciclo en una empresa de rubro de calzado.

c) La aplicación del Lean Manufacturing contribuye significativamente en la reducción de los costos de productos no conforme en una empresa de rubro de calzado.

3.2 Variables

3.2.1 Definición conceptual de las variables

Metodológicamente se asume las siguientes variables independientes, dependientes e intervinientes.

a) Variables Independientes: Lean Manufacturing.

b) Variables Dependientes: Producto no conforme – Productividad – Tiempo de ciclo – Costos de productos no conforme.
3.2.2 Operacionalización de variables

“Proceso metodológico que radica en descomponer las variables que componen el problema de investigación, iniciando desde lo más general a lo más específico; es decir que estas variables se dividen (si son complejas) en dimensiones, áreas, aspectos, indicadores, índices, subíndices, ítems; mientras si son concretas solamente en indicadores, índices e ítems.”
(Metodología de investigación, pautas para hacer Tesis, 2013, p.44)

Tabla 5: Variable Dependiente General

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>INDICADOR</th>
<th>DEFINICION OPERACIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1: Cantidad de Productos No Conforme</td>
<td>DPU(%)=(Numero de defectos observados / Número de unidades producidas) * 100</td>
<td>Este indicador mide el nivel de defectos de un proceso. Relaciona el número de unidades producidas que tiene uno o más defectos y el número total de unidades producidas.</td>
</tr>
</tbody>
</table>

Fuente: Realizado por los autores

La tabla 5 nos muestra la variable dependiente general, su indicador y definición operacional.
VARIABLE DEPENDIENTE ESPECÍFICA (Y)

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>INDICADOR</th>
<th>DEFINICION OPERACIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1: Productividad</td>
<td>Productividad: Pares Producedos/Horas-Hombre</td>
<td>Este indicador mide la relación entre la cantidad de productos obtenida por un sistema productivo y los recursos utilizados para obtener dicha producción.</td>
</tr>
<tr>
<td>Y2: Tiempo de ciclo</td>
<td>Tiempo de ciclo: tiempo disponible / unidades producidas</td>
<td>Este indicador mide el tiempo que se emplea en el proceso productivo desde su inicio hasta su fin.</td>
</tr>
<tr>
<td>Y3: Costos de Productos No Conforme</td>
<td>Costos de no Calidad: Soles/par</td>
<td>Los costos de no calidad no son más que el punto de vista pesimista de los costos de calidad como las ineficiencias o incumplimientos, los cuales son evitables, como por ejemplo: reproceso, desperdicios, devoluciones, reparaciones, reemplazos, gastos por atención de quejas y exigencias de cumplimiento de garantías, entre otros</td>
</tr>
</tbody>
</table>

Tabla 6: Variable Dependiente Específica

Fuente: Elaborado por los autores

La tabla 6 nos muestra la variable dependiente específica, su indicador y definición operacional.
CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN

4.1. Tipo de investigación

Esta investigación es aplicada

“La tesis fue Cuantitativa de investigación Aplicada que tuvo por objetivo resolver un determinado problema o planteamiento específico, teniendo como finalidad la búsqueda y consolidación del conocimiento para su aplicación y, por ende, para el enriquecimiento del desarrollo cultural y científico.” (Bibliotecas Duoc UC, 2018, p.70)

“La investigación aplicada se basó en la generación de conocimiento con aplicación en forma directa a los problemas de la sociedad o el sector productivo.” (Lozada, 2014, p.34)

La investigación fue de tipo aplicada porque propuso un método de implementación de la 5S, esta herramienta fue utilizada con el fin de mejorar la calidad del producto y niveles de producción.

4.2. Método de la investigación

La investigación fue de tipo explicativa, se llevó a cabo para investigar de forma puntual un fenómeno que no se había estudiado antes, o que no se había explicado bien con anterioridad. Su intención fue proporcionar detalles donde existe una pequeña cantidad de información.

El investigador obtuvo una idea general y utilizó la investigación como una herramienta para que lo guíe a temas que podrían abordarse en el futuro. Su
objetivo fue encontrar por qué y para qué de un objeto de estudio. (QuestionPro, 2019, p.30)

4.3. Diseño de investigación

Diseños de investigación Experimental

Pre experimentos; diseño de un solo grupo cuyo grado de control es mínimo, un ejemplo del mismo son los estudios de caso con una sola medición. Experimentos puros; buscan incrementar los conocimientos teóricos para el progreso de una determinada rama de la ciencia o la tecnología.

Cuasi experimentos: experimentos en los cuales no es posible asignar los sujetos en forma aleatoria, en vista que con introduce posibles problemas de validez interna y externa. (Hernández, R; Fernández, C; Baptista, M, 2014,p.67)

La investigación fue de diseño experimental prospectivo, porque analiza los cambios del periodo Enero - Agosto 2018, anterior a la implementación y Enero –Agosto 2019, después de la implementación, además de manipular las variables de la cantidad de productos no conforme, productividad, tiempo de ciclo y los costos de los productos no conforme.

4.4. Población y muestra

Población

“La definición de Población es el conjunto sobre lo que estamos interesados en obtener conclusiones y acerca de lo que queremos hacer inferencias. Normalmente es demasiado grande para abarcarlo.” (Danel, O, 2015, p.35)
“Es el conjunto total de individuos, objetos o medidas que poseen algunas características comunes o similares observables en un lugar y en un momento o situación determinada, donde se desarrollará la investigación” (Metodología de Investigación Científica., 2013, p.46)

La población de estudio para los fines de esta investigación fue la producción mensual del calzado, tomando como meses de estudio desde Enero hasta Agosto del 2018 antes de la implementación y desde Enero hasta Agosto del 2019 como los resultados obtenidos después de la implementación.

\[
N = 8
\]

Muestra

“Es la parte de la población a la que tenemos acceso y sobre el que realmente hacemos las observaciones (mediciones). Debe ser “representativo”, formado por miembros “seleccionados” de la población. (Individuos o unidades de análisis)” (Danel, O, 2015, p.35)

El tamaño de muestra que comprende nuestra investigación fue igual a la población debido a que fue menor a 30 datos y por lo tanto se tomó como meses de estudio desde Enero hasta Agosto del 2018 antes de la implementación y desde Enero hasta Agosto del 2019 como los resultados obtenidos después de la implementación

\[
N_a = 8 \text{ (Meses de producción de calzado antes de la implementación, enero hasta agosto del 2018)}
\]

\[
n_d = 8 \text{ (Meses de producción de calzado después de la implementación, enero hasta agosto del 2019)}
\]

La muestra utilizada fue para cada una de los indicadores, es decir el promedio mensual de los meses estudiados en productividad, tiempo de ciclo y los costos.

Con la finalidad de comprobar que la muestra fue igual a la población se realizó las siguientes demostraciones:
Se trabajó con un nivel de confianza del 95% por lo tanto nuestro nivel de significancia fue de 5% como se puede observar en la siguiente figura.

![Figura 6 Nivel de confianza del 95%](image)

Figura 6 Nivel de confianza del 95%

La figura 6 nos muestra la gráfica del intervalo de confianza del 95% y significancia del 5% equivalente al lado izquierdo y derecho con un valor de 0.025.

Para encontrar el intervalo de confianza debemos tomar el nivel de confianza (95%) y el nivel de significancia $\alpha/2$ (2.5%). Esto nos da como resultado 97.5%, valor que debemos buscar en la gráfica de distribución normal.

![Figura 7 Tabla de distribución normal](image)

Figura 7 Tabla de distribución normal
Fuente: Universidad de Murcia (2016)

La figura 7 nos muestra la tabla de distribución normal, donde se marca de forma horizontal al 1.9 y en forma vertical al 0.06.
\[n = \frac{Z^2 \cdot p \cdot q \cdot N}{(N - 1) \cdot e^2 + Z^2 \cdot p \cdot q} \]

Z = 1,96 (Intervalo de confianza)

N = 8 (Tamaño de la población)

e = 5% (error)

p = 50% (porcentaje de aciertos)

q = 50% (porcentaje de fracasos)

\[n = \frac{1,96^2 \cdot 0,5 \cdot 0,5 \cdot 8}{(8 - 1) \cdot 0,05^2 + 1,96^2 \cdot 0,5 \cdot 0,5} \]

\[n = \frac{7,6832}{0,0175 + 0,9604} \]

\[n = \frac{7,6832}{0,9779} \]

\[n = 7,856 \]

n = 8 meses

Se demostró que nuestra población es igual que la muestra a partir de los datos obtenidos mediante tablas y con un error muestral del 5%.

4.5. Técnicas e instrumentos de recolección de datos

Documentos y registros:

Técnica que consiste en investigar los datos presentes en documentos ya existentes, como bases de datos, actas, informes, registros de asistencia, etc. Por lo tanto, lo fundamental para este método es la habilidad para encontrar, seleccionar y analizar la información disponible.
Instrumentos que se emplearán son:

- Mapeo del proceso
- Check List de no conformes
- Históricos de Producción
- Indicadores de productividad
- Indicadores de Costos
- Indicadores de Tiempo de Ciclo
- Indicadores de calidad

Mapa de Procesos, el flujo se encuentra estandarizado por el área de sistema de gestión de la calidad (SIG), dicho mapa es validado por los auditores externos y la presentación en la renovación de la ISO 9001:2015.

La validez y fiabilidad de los instrumentos se deben a que el registro de las no conformes son ingresados al Sistema CM de la empresa, bajo catálogos estandarizados de tolerancias trabajadas entre el analista de control de calidad y el área comercial.

Cabe mencionar que, en las áreas de montaje y acabado, hay 4 inspectoras de control de calidad que se encuentran capacitadas para el control del calzado, ya que tienen 15 años de experiencia en la empresa, conociendo tolerancias por temas de material u errores por proceso.

Teniendo el registro en el sistema de pares por no conformes de 3 tipos; corrección, cortar pieza y observación, el ingeniero de control de calidad se encarga de realizar el análisis con la ingeniería del Área de montaje y acabado, por temas de costos de Mano de Obra y Materia Prima, teniendo como resultado los indicadores de calidad, indicadores de costos y el check list de no conforme.
Los indicadores de producción, productividad y tiempo de ciclo son validados por la ingeniera del Área.

4.6. Descripción de procedimientos de análisis

4.6.1. Diagrama de Gantt

“Es una herramienta que se empleó para coordinar las tareas a lo largo de un período determinado de tiempo. Debido a que es fácil visualizar las tareas por realizar se puede seguir y controlar el progreso de cada una de las etapas de un proyecto. Muestra gráficamente las tareas, su duración y secuencia, además del calendario general del proyecto y la fecha de finalización prevista.” (Handll, K. 2014, p.3)

![Diagrama de Gantt](Figura 8 Diagrama de Gantt)

Fuente: Elaborado por los autores

La figura 8 nos muestra el diagrama de Gantt, que tiene como finalidad el cronograma de actividades planificadas en un intervalo de tiempo.
4.6.2. Ishikawa

“Es una forma de mostrar las causas de un problema y llegar a la conclusión del porque se genera. Nos permite, por tanto, lograr un conocimiento común de un problema complejo, sin ser nunca sustitutivo de los datos.” (Costta, G; Guevara, J, 2015, p.43)

![Figura 9 Grafico de Ishikawa](image)

La figura 9 nos muestra la estructura de un diagrama de Ishikawa, que se conoce como la espina de pescado o el diagrama causa efecto, ya que tiene como finalidad encontrar la causa raíz del problema.

4.6.3. Histogramas

“Es la representación gráfica de una tabla de frecuencias. El histograma puede ser: de frecuencias absolutas, de frecuencias relativas, de frecuencias absolutas acumuladas y de frecuencias relativas acumuladas.” (Pascuzzo, A, 2014, p.24)
La figura 10 nos muestra el ejemplo de un histograma, diagrama de barras, que muestra una frecuencia o repetividad de un valor medible.

4.6.4. Pareto

El principio de este diagrama es conocer el concepto de lo vital contra lo trivial, es decir, el 20% de las variables causan el 80% de los efectos, lo que significa que existen unas cuantas variables vitales y muchas variables triviales. Un proceso tiene innumerables variables que repercuten en el resultado; sin embargo, no todas pueden ser controladas (por ejemplo, el clima, el tipo de cambio, la inflación, etc.); por ello, es importante describir las que sí son controlables. De estas variables controlables; no todas son importantes, generalmente hay unas cuantas que son vitales (20%) y son las que causan el 80% del resultado.” (Calderón, F, 2014, p.7)
La figura 11 nos muestra el diagrama de Pareto, relación 80 y 20, que tiene como finalidad tomar énfasis en el defecto con mayor frecuencia, ya que es el impacto mayor de los defectos.
5.3 Representación de resultados

5.3.1. Estado de la empresa antes de la aplicación de las 5´S

1) Sobre stock de insumos

La figura 12 nos muestra que los insumos se encontraban colocados en el piso en cajas viejas sin ningún tipo de control, se solicitaba al área de almacén abastecer de insumos, pero este abastecimiento no era el correcto ya que internamente no se manejaba un control de inventario, por ende, las materias primas se deterioraban por un almacenamiento inadecuado en el área.

Figura 12 Insumos no utilizados en el proceso de producción

Fuente: Elaborado por los autores
2) **Envases de tintes**

La figura 13 nos muestra las cremas desordenadas, sin rotular y sucias, ocasionando tiempo muerto en la búsqueda del color de la crema.

![Figura 13 Envases desordenados](image)

Fuente: Elaborado por los autores

3) **Muestras de Acabados del Calzado**

La figura 14 nos muestra que las muestras no se llegaban a visualizar bien y el personal no lo retiraba de la bolsa, lo cual ocasionaba errores en los acabados.

![Figura 14 Muestras colocadas en bolsa](image)

Fuente: Elaborado por los autores
4) Recorte de Forro

La figura 15 nos muestra que el personal recortaba y todos los restos de cuero se esparcían por el suelo lo que generaba un alto tiempo de limpieza, para mejorararlo se entregó al personal 2 canastas.

![Figura 15 Canastas que contienen los restos de trabajo](image)

Fuente: Elaborado por los autores

5) Puesto de encementado

La figura 16 nos muestra el desgaste físico del personal por agacharse y recoger las bolsas ocasionando dolores de espalda además de aumentar el tiempo de búsqueda de las opíparas por el desorden.

![Figura 16 Bolsas esparcidas en el piso](image)

Fuente: Elaborado por los autores
6) Secado en Pre-acabado

La figura 17 nos muestra el tiempo de secado es de 10min generando tiempo muerto y cuello de botella.

Figura 17 Bolsas esparcidas en el piso
Fuente: Elaborado por los autores

7) Mesa para plancha

La figura 18 nos muestra las mesas para plancha, aumentaban el tiempo de desplazamiento entre actividades por persona, además de generar desorden en producción.

Figura 18 Mesas que no son utilizadas en el proceso de producción
Fuente: Elaborado por los autores
8) Plantas de costura

La figura 19 nos muestra cómo las plantas se encontraban en el piso sin ningún tipo de control provocando su desgaste debido a que se encuentran sin protección lo que en muchas ocasiones termina por elevar el costo por reproceso.

![Figura 19 Plantas colocadas en el piso](image19.png)

Fuente: Elaborado por los autores

9) Mesa sin uso

La figura 20 nos muestra las mesas en desuso, quitan espacio al área y se muestran insumos en su interior que no agregaban valor al proceso productivo.

![Figura 20 Mesa que obstruye el traslado de los trabajadores](image20.png)

Fuente: Elaborado por los autores
10) Teflones

La figura 21 nos muestra que no se encuentran rotuladas los teflones para la máquina armadora de punta lo que aumenta el tiempo de búsqueda generando tiempos muertos en el proceso.

![Imagen de teflones](image1.png)

Figura 21 Mesa que obstruye el traslado de los trabajadores
Fuente: Elaborado por los autores

11) Tachuelas

La figura 22 nos muestra que se colocaban las tachuelas sin ninguna estructura de respaldo lo que ocasionaba daños en el cuero o heridas al personal.

![Imagen de tachuelas](image2.png)

Figura 22 Colocación de tachuelas sin soporte
Fuente: Elaborado por los autores
12) Escobas

La figura 23 nos muestra que las escobas se encontraban tiradas y se perdían además de aumentar el tiempo de desplazamiento del personal.

![Figura 23 Escobas sin identificación](image)

Fuente: Elaborado por los autores

13) Maquinas en desuso

La figura 24 nos muestra el área se encontraba cargada por maquinas sin uso.

![Figura 24 Máquina no utilizada](image)

Fuente: Elaborado por los autores
14) Encementado

La figura 25 nos muestra que los trabajadores tenían que agacharse y recoger los pegamentos para llenar los envases lo que provocaba desgaste físico.

![Imagen de pegamentos en el piso](image1)

Figura 25 Pegamentos colocados en el piso

Fuente: Elaborado por los autores

15) Relleno

La figura 26 nos muestra que el personal y el supervisor no tenían conocimiento de los códigos de los rellenos y el juego por línea generando confusión y cambios para la programación del AREA DE PREFINITO además de no controlar el stock de los rellenos ni en montaje ni prefinito.

![Imagen de relleno](image2)

Figura 26 Pegamentos colocados en el piso

Fuente: Elaborado por los autores
16) Remallado

La figura 27 nos muestra que los trabajadores hablaban demasiado porque se encontraban frente a frente disminuyendo su ritmo de trabajo.

![Figura 27 Mesa de trabajo utilizada por 2 trabajadores]

Figura 27 Mesa de trabajo utilizada por 2 trabajadores

Fuente: Elaborado por los autores

17) Zona de Hormas

La figura 28 nos muestra que las hormas se encontraban dispersas sin ningún tipo de control en los casilleros aumentando el tiempo de búsqueda.

![Figura 28 Hormas dispersadas sin identificación en casilleros]

Figura 28 Hormas dispersadas sin identificación en casilleros

Fuente: Elaborado por los autores
18) **Rueda de coches**

La figura 29 nos muestra que se trabajaba con una rueda de coches desgastada trabándose en varias ocasiones.

![Figura 29 Rueda de coches desgastadas](image)

Fuente: Elaborado por los autores

19) **Emplantillado**

La figura 30 nos muestra que se perdía tiempo en caminar e ir a la parte posterior a buscar sus plantillas.

![Figura 30 Estante que contiene plantillas colocadas lejos del trabajador](image)

Fuente: Elaborado por los autores
20) Envases de tintes

La figura 31 nos muestra que los envases se encontraban sin rotular además de estar en la parte de arriba del estante aumentando el tiempo de búsqueda por tonalidad.

Figura 31 Envases sin rotular

Fuente: Elaborado por los autores

21) Resanado

La figura 32 nos muestra que se encontraban envases sin rotular lo cual dificultaba la búsqueda de los colores necesarios para trabajar el calzado.

Figura 32 Envases sin rotular

Fuente: Elaborado por los autores
22) Estructura de plantillas

La figura 33 nos muestra que los trabajadores perdían tiempo en recoger las estructuras de plantillas debido a que encontraban en un java colocado en el piso.

![Figura 33 Plantillas colocadas en javas](image)

Fuente: Elaborado por los autores

23) Limpieza de planta

La figura 34 nos muestra que por falta de control en esta actividad era realizada por 2 personas, generando actividades innecesarias y rutinarias, en forma mecánica sin revisar tolerancias.

![Figura 34 Limpieza de planta realizado por muchos operarios](image)

Fuente: Elaborado por los autores
24) Envases

La figura 35 nos muestra que los envases se encontraban encima de una silla y en el piso ocupando espacio innecesario además de observarse el área en desorden.

Figura 35 Envases colocadas encima de una silla
Fuente: Elaborado por los autores

25) Tintes

La figura 36 nos muestra que no se habían rotulado los envases además de ser inadecuados para contener para los tintes.

Figura 36 Envases de tintes sin rotular
Fuente: Elaborado por los autores
26) Mesa de sopleteado

La figura 37 nos muestra que era una mesa innecesariamente grande que ocupaba mucho espacio en el área de trabajo además de haber insumos amontonados.

![Figura 37 Mesa no utilizada en el área de trabajo](image)

Fuente: Elaborado por los autores

27) Coches

La figura 38 nos muestra que los coches estaban colocados en una parte del área de acabado donde generaban obstrucción a los trabajadores.

![Figura 38 Coches colocados sin usar en el área de acabado](image)

Fuente: Elaborado por los autores
28) Crema

La figura 39 nos muestra que no había una manera eficiente de obtener la crema necesaria para el proceso de producción, se sacaba con instrumentos que no eran para ese uso.

Figura 39 Crema colocada en un envase sin herramienta para retirarlo

Fuente: Elaborado por los autores

29) Hormas de aluminio

La figura 40 nos muestra que las hormas no estaban rotuladas lo que generaba tiempos de búsqueda elevados para realizar el trabajo; además, se encuentran en una java sin ubicación exacta.

Figura 40 Hormas en java sin ubicación exacta

Fuente: Elaborado por los autores
30) Cortes esparcidos en el suelo

La figura 41 nos muestra que los cortes que se realizaban en el proceso se encontraban esparcidos esperando a que control de calidad realice la inspección, pero al encontrarse desordenado el control era ineficiente.

Figura 41 Cortes esparcidos en el suelo

Fuente: Elaborado por los autores

31) Mantenimiento y rotulado de coches

La figura 42 nos muestra que los coches no recibían mantenimiento, lo cual repercute en el tiempo de producción porque en muchas ocasiones se generan paradas por avería de algún fallo en los coches

Figura 42 Coches sin mantenimiento
Fuente: Elaborado por los autores
32) Rotulado de hormas

La figura 43 nos muestra que las hormas no estaban rotuladas lo cual genera confusión y aumento en el tiempo de búsqueda de las hormas, ya que el personal buscaba las hormas según criterio propio u memoria del asignador de hormas, ya que generaba errores en el calzado a mano ocasionando rotura de cuero por el uso de horma incorrecta.

Figura 43 Hormas sin rotular

Fuente: Elaborado por los autores
5.3.2 Flujograma del proceso de montaje y acabado

La figura 44 nos muestra el flujo del proceso en el área de montaje, señalando todas las áreas que participan y las actividades que realiza cada uno.

La figura 45 nos muestra el flujo del proceso en el área de acabado, señalando todas las áreas que participan y las actividades que realiza cada uno.
5.3.3 DOP del área de montaje y acabado (DOP “Diagrama de Operaciones de Procesos”)

DIAGRAMA DE OPERACIONES DE PROCESOS

<table>
<thead>
<tr>
<th>FABRICA: CALIMOD</th>
<th>PAGINA: 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTAMENTO: PRODUCCIÓN</td>
<td>FECHA: 04/08/2019</td>
</tr>
<tr>
<td>PRODUCTO: CALZADO</td>
<td>METODO DE TRABAJO: MEJORADO</td>
</tr>
<tr>
<td>DIAGRAMA HECHO POR: SUAREZ, GUZMAN</td>
<td>APROBADO POR: DR. JOSE VELASQUEZ</td>
</tr>
</tbody>
</table>

![Diagrama de Operaciones de Procesos](image)

Cuero

1. CONFORMADOR DE TALON
2. CONFORMADOR DE MOCASIN
3. PUNTEIRA
4. CERRADOR
5. REMALDE
6. CLAVADOR DE TALSA
7. ARMADO DE PUNTA
8. CAMBRIA
9. CERRADOR DE TALON
10. BORRADO
La figura 46 nos muestra el diagrama de operaciones de procesos de la línea 1 en el área de montaje y acabado, en esa línea se realiza con mayor frecuencia el calzado elegante.

Figura 46 Diagrama de operaciones de procesos - Línea 1

Fuente: Elaborado por los autores
La figura 46 nos muestra el diagrama de operaciones de procesos de la línea 1 en el área de montaje y acabado, en esa línea se realiza con mayor frecuencia el calzado elegante.
La figura 47 nos muestra el diagrama de operaciones de procesos de la línea 2 en el área de montaje y acabado, en esa línea se realiza con mayor frecuencia el calzado casual.

Fuente: Elaborado por los autores
CAPÍTULO VI: IMPLEMENTACIÓN DE LAS MEJORAS

6.3.1. Implementación de las primera S

a) Equipo 5’s

La figura 48 nos muestra que al comenzar la implementación de las 5´S se delegó a 3 operarios para formar parte del equipo 5´s como líderes de producción.

Figura 48 Equipo 5´S
Fuente: Elaborado por los autores

b) Layout de las áreas de Montaje y Acabado

La figura 49 nos muestra las señalizaciones que existen además de observar gráficamente la distribución del área de montaje y acabado. Se puede observar los riesgos de producción al cual está expuesto el personal por ende se brindan las capacitaciones de prevenir los accidentes y la importancia del uso del Epp´s
Figura 49 Layout de las áreas de montaje y acabado

Fuente: Elaborado por los autores
c) Plan de trabajo

La figura 50, nos muestra el plan de trabajo del área de Montaje que se realizó en la empresa Calimod, donde se definieron los objetivos relacionados con sus actividades, sus fórmulas respectivas, resultado, meta, frecuencia y responsable por dicha actividad en el cual se estableció con fechas determinadas.

<table>
<thead>
<tr>
<th>N°</th>
<th>OBJETIVO</th>
<th>ACTIVIDADES</th>
<th>FORMULA</th>
<th>CANT PIE REPROCESADO</th>
<th>META (pie)</th>
<th>FREC</th>
<th>RESPONSABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capacitar al puesto de pre- analisis</td>
<td>Pie observado/ Pie producido</td>
<td>121</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capacitar al puesto de montaje</td>
<td>Pie producido</td>
<td>21</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Capacitar aplicación de agua</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Capacitar recorte de folio</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Evaluar las capacitaciones</td>
<td>Act. realizadas / Act. programadas</td>
<td>-</td>
<td>100%</td>
<td>Mensual</td>
<td>Analista/ Supervisor</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Capacitar aplicación de cera</td>
<td>Act. realizadas / Act. programadas</td>
<td>104</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Capacitar alba de taza</td>
<td>Act. realizadas / Act. programadas</td>
<td>183</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Reducir el N° de no conformes</td>
<td>Act. realizadas / Act. programadas</td>
<td>104</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Capacitar jalar enchapado</td>
<td>Pie observado/ Pie producido</td>
<td>44</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Capacitar Cantado</td>
<td>Pie producido</td>
<td>55</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Capacitar limpieza de pegamento</td>
<td>-</td>
<td>55</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Evaluar las capacitaciones</td>
<td>Act. realizadas / Act. programadas</td>
<td>55</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Capacitar armado de pinta</td>
<td>Act. realizadas / Act. programadas</td>
<td>55</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Capacitar en encomendar</td>
<td>Pie observado/ Pie producido</td>
<td>55</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Capacitar en embalado</td>
<td>Pie observado/ Pie producido</td>
<td>55</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Capacitar en embalado</td>
<td>Pie observado/ Pie producido</td>
<td>55</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Evaluar las capacitaciones</td>
<td>Act. realizadas / Act. programadas</td>
<td>-</td>
<td>100%</td>
<td>Semanal</td>
<td>Supervisor</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Capacitación de la T’S</td>
<td>Act. realizadas / Act. programadas</td>
<td>100%</td>
<td>Semanal</td>
<td>Analista/ Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Publicar herramientas de la S</td>
<td>Act. realizadas / Act. programadas</td>
<td>100%</td>
<td>Semanal</td>
<td>Analista</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Implementar la 1’s</td>
<td>Act. realizadas / Act. programadas</td>
<td>100%</td>
<td>Semanal</td>
<td>Analista/ Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Identificar tarjetas rjas</td>
<td>Act. realizadas / Act. programadas</td>
<td>100%</td>
<td>Semanal</td>
<td>Analista/ Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Registro y plan de solución de las tarjetas</td>
<td>Act. realizadas / Act. programadas</td>
<td>100%</td>
<td>Semanal</td>
<td>Analista/ Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Indicadores de tarjetas rjas</td>
<td>Act. realizadas / Act. programadas</td>
<td>100%</td>
<td>Semanal</td>
<td>Analista</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 50 Plan de trabajo proceso de montaje

Fuente: Elaborado por los autores
La figura 51, nos muestra el plan de trabajo del área de Acabado que se realizó en la empresa Calimod, donde se definieron los objetivos relacionados con sus actividades, sus fórmulas respectivas, resultado, meta, frecuencia y responsable por dicha actividad en el cual se estableció con fechas determinadas.

![Plan de trabajo del proceso de acabado](image)

Figura 51 Plan de trabajo del proceso de acabado

Fuente: Elaborado por los autores
d) Tarjetas rojas

La Figura 52, permite identificar el elemento innecesario y que se debe tomar una acción correctiva, una vez visualizados y marcados con las tarjetas los elementos innecesarios, se tendrán que hacer las siguientes consultas:

1. Mover el elemento a una nueva ubicación dentro de la planta.

2. Almacenar al elemento fuera del área de trabajo.

3. Eliminar el elemento.

![Figura 52 Tarjetas rojas](image)

Fuente: Elaborado por los autores
e) Flujo de las tarjetas rojas

La figura 53, muestra el flujo de las tarjetas rojas iniciando el emitir la tarjeta roja de preferencia en el sector asignado realizándolo el operador, luego proceder a colocar en la máquina, colocar una copia en la pizarra 5s, trasladar a la zona de tesoro, ingresar los datos de la tarjeta roja en la hoja de registro de la pizarra y el supervisor o jefe de área procederá analizar las tarjetas emitidas, realizar la pregunta si se puede o no usar, realizando el ECRS (Eliminar, Contener, Reducir o Simplificar), al realizar la solución de la tarjeta roja se retira la tarjeta del tesoro encontrado.

Figura 53 Flujo de tarjetas rojas

Fuente: Elaborado por los autores
f) **Formato de Indicadores de seguimiento de las tarjetas rojas**

La figura 54 nos muestra el formato de porcentaje de avance de las tarjetas rojas.

Fuente: Elaborado por los autores

Figura 54 Porcentaje de avance de las tarjetas rojas

La figura 54 nos muestra el formato de porcentaje de avance de las tarjetas rojas.

g) **Formato de Indicador de seguimiento del plan de trabajo**

La figura 55 nos muestra el formato de cumplimiento del plan de trabajo de la investigación.

Figura 55 Cumplimiento de plan de trabajo

Fuente: Elaborado por los autores

La figura 55 nos muestra el formato de cumplimiento del plan de trabajo de la investigación.
h) Formato de registro y solución de tarjetas rojas

La figura 56 nos muestra el formato de registro y solución de tarjetas rojas, número de la tarjeta, fecha, nombre, cantidad, destino y responsable

i) Flujo de auditoría

La figura 57 nos muestra el protocolo de etapas que sigue la auditoría, indicando a los participantes y la tarea que realiza cada uno.
j) Formato de auditoría de la primera S

La figura 58 nos muestra el formato de auditoría de la 1S, persona y clasificación.

k) Indicador de seguimiento de auditoría

La figura 59 nos muestra el formato de resultado de la auditoría por semana.
1) Plan de acción de auditorías

<table>
<thead>
<tr>
<th>ECUENTO</th>
<th>TAREAS NO CUMPLIDAS</th>
<th>COMENTARIO</th>
<th>ACCIÓN</th>
<th>RESPONSABLES</th>
<th>FECHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ¿Las personas del equipo se encuentran capacitadas?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. ¿Los personajes del equipo se encuentran familiarizados con el proceso?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ¿Los equipos de auditoría se encuentran familiarizados con el procedimiento?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. ¿Los equipos de auditoría se encuentran familiarizados con el proceso?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ¿Los equipos de auditoría se encuentran familiarizados con el proceso?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. ¿Los equipos de auditoría se encuentran familiarizados con el proceso?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 60 Plan de acción de la primera S

Fuente: Elaborado por los autores

La figura 60 nos muestra el formato de plan de acción de la primera S.

m) Layout de las 5´s

Figura 61 Layout de las 5´s

Fuente: Elaborado por los autores

La figura 61 nos muestra el layout de la primera S, indicando la metodología y los indicadores.
n) Cruz de seguridad

La figura 62 nos muestra la cruz de seguridad, este formato indicado los días que no hubo accidente marcándolo con una X, en caso de existir algún incidente se rellena el día con un círculo negro y accidente en círculo.

o) Identificación de objetos obsoletos

La figura 63 nos muestra que se identificó los objetos que están en desuso y obsoletos que se encontraban en los puestos de trabajo y se colocaron un lugar específico.
p) Identificación de objetos obsoletos en zona de tesoros

La figura 64 nos muestra que se implementó una zona de tesoros para colocar todos los objetos que están obsoletos y en desuso.

![Imagen de zona de tesoros](image)

Figura 64 Zona de tesoros
Fuente: Elaborado por los autores

q) Forrado de zona de tesoros

La figura 65 nos muestra que se forró la zona de tesoros para mejorar la presentación.

![Imagen de zona de tesoros forrada](image)

Figura 65 Zona de tesoros forrada
Fuente: Elaborado por los autores
r) Delimitado de zona de tesoros

La figura 66 nos muestra que luego que se forró el pallet para acondicionarlo como zona de tesoros se procedió a delimitarlo con una cinta amarilla.

Figura 66 Delimitado de la zona de tesoros
Fuente: Elaborado por los autores

RESUMEN DE LA PRIMERA S

1) **Definición de Autores:** Consiste en identificar, clasificar, separar y eliminar del puesto de trabajo los equipos, partes, productos, materiales y documentos innecesarios, conservando sólo los necesarios.

2) **Herramientas:**

 2.1. Tarjeta Roja

 2.2. Plan de Acción.

3) **Beneficios:**

 3.1. Más espacio

 3.2. Mejor control de inventarios

 3.3. Eliminación de desechos

 3.4. Menor accidentabilidad
PREGUNTAS DE LA PRIMERA S

-¿Cómo se llena una tarjeta roja?

La explicación se encuentra en el panel (pizarra) de 5S.

Consiste en poner en la tarjeta ¿Cuándo?, ¿dónde?, ¿qué se encontró? y ¿cuántos?, todas estas preguntas referidas al tesoro que se encontró.

Luego de responder a las preguntas se procede a marcar una de las opciones que se encuentran en “categoría” y luego se marca una de las opciones en “razón para etiquetado”. Finalmente, estas tarjetas se llevan al supervisor para que él llene “Forma de despacho”.

Cabe mencionar que un tesoro es un elemento innecesario y que, por ende, se debe tomar una acción correctiva. Por ejemplo, un tesoro puede ser: todos los artículos que no se utilicen en el área de trabajo por mucho tiempo, elementos dañados, elementos obsoletos, etc.

-¿Qué es la zona de tesoro?

Es un área en donde se colocan todos los elementos tarjepeados. En dicho lugar los elementos no pueden permanecer más de dos semanas.

Figura 67 Zona de tesoros

Fuente: Elaborado por los autores

La figura 67 nos muestra la zona de tesoros implementada durante la aplicación de las 5´S.
-¿El equipo tiene plan de trabajo? : Problema, Acciones, Responsables, Plazo.

El plan de trabajo es un formato que contiene todas las actividades que debemos realizar cada semana para así poder pasar a la siguiente S.
Tabla 7 Venta de Hormas en desuso

<table>
<thead>
<tr>
<th>KILO/HORMA</th>
<th>CURVA DE TALLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.45</td>
<td>T-38</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOLES</th>
<th>KILOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/15.00</td>
<td>51</td>
</tr>
<tr>
<td>S/2,325.00</td>
<td>7,866</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 7 nos muestra los ingresos que se generaron por la venta de hormas en desuso como resultado de implementar la primera S.
La tabla 8 nos muestra el ahorro de inventarios, desechos e índice de accidentabilidad como resultado de la primera S.

<table>
<thead>
<tr>
<th>DETALLE</th>
<th>ANTES</th>
<th>DESPUÉS</th>
<th>MEJORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventarios</td>
<td>S/2,979.33</td>
<td>S/951.91</td>
<td>S/2,027.41</td>
</tr>
<tr>
<td>Desechos</td>
<td>S/0.00</td>
<td>S/2,325.00</td>
<td>S/2,325.00</td>
</tr>
<tr>
<td>Accidentabilidad</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AHORRO</td>
<td>S/4,352.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores
6.3.2. Implementación de la Segunda S

a) Panel Segunda S

![Panel de Actividades 5S](image)

Figura 68 Panel de actividades 5S
Fuente: Elaborado por los autores

La figura 68 nos muestra el panel de actividades de la segunda S señalando los indicadores y herramientas que se utilizan.
b) Flujo de la Lección en un Punto (LUP)

![Diagrama de flujo de lección en un punto](image)

La figura 69 nos muestra el flujo de lección en un punto.

Fuente: Elaborado por los autores

La figura 69 nos muestra el flujo de lección en un punto.

d) Formato del LUP

<table>
<thead>
<tr>
<th>TÍTULO DE LUP</th>
<th>CÓDIGO DE LUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELABORADO POR:</td>
<td>MÁGICA:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CATEGORÍA DE LUP</th>
<th>VALIDACIÓN LUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODICIÓN BÁSICO</td>
<td>Jefe de Área/SUPervisor</td>
</tr>
<tr>
<td>CASO DE PROBLEMA</td>
<td>COORDINACIÓN TPM</td>
</tr>
<tr>
<td>CASO DE NUEVA</td>
<td></td>
</tr>
</tbody>
</table>

Figura 70 Formato del LUP

Fuente: Elaborado por los autores

La figura 70 nos muestra el formato de dibujo de lección en un punto.

79
1) Sobre stock de insumos

La figura 71 y 72 nos muestra que los insumos ahora se piden bajo control de requerimiento, para evitar el sobre stock en el Área.

ANTES

Figura 71 Stock de insumos antes de la implementación
Fuente: Elaborado por los autores

DESPUÉS

Figura 72 Sobre stock de insumos solucionado
Fuente: Elaborado por los autores
2) **Envases de tintes**

La figura 73 nos muestra que se clasificó las cremas que se usan, se retiraron las en desuso, mejorando el orden y tiempo en identificar las cremas.

ANTES

DESPUÉS

Figura 73 Tintes clasificados colocados ordenadamente en un estante

Fuente: Elaborado por los autores

3) **Muestras de Acabados del Calzado**

La figura 74 nos muestra que se implementó una repisa de muestras para evitar los No Conforme; además, para llegar a la tonalidad y diseño establecido.

ANTES

DESPUÉS

Figura 74 Vitrina de muestras

Fuente: Elaborado por los autores
4) Recorte de Forro

La figura 75 nos muestra que el personal de recorte ya se adaptó al cambio mostrando el orden y limpieza. Una actividad menor de limpieza.

ANTES

![Antes de la implementación](image1)

DESPÚES

![Después de la implementación](image2)

Figura 75 Zona de trabajo limpia por implementación de javas

Fuente: Elaborado por los autores

5) Puesto de en cementado

La figura 76 nos muestra que el personal está satisfecho por brindar la mesa evitando su desgaste físico mejorado la productividad en el puesto.

ANTES

![Antes de la implementación](image3)

DESPÚES

![Después de la implementación](image4)

Figura 76 Puesto de en cementado después de la implementación

Fuente: Elaborado por los autores
6) **Secado en Pre-acabado**

La figura 77 nos muestra que se implementó una cabina de secado para aumentar la productividad y reducir la acumulación en el puesto de trabajo.

![Figura 77 Implementación de cabina de secado](image)

Fuente: Elaborado por los autores

7) **Mesa para plancha**

La figura 78 nos muestra que se eliminó ya que no agregaba valor al proceso y se lo reemplazó con una computadora para control de acabados.

![Figura 78 Eliminación de mesa para plancha](image)

Fuente: Elaborado por los autores
8) Plantas de costura

La figura 79 nos muestra que se colocó canastillas para poner las plantas de costura, para evitar su contacto con el piso y se raspen.

Antes

Después

Figura 79 Javas que contienen las plantas
Fuente: Elaborado por los autores

9) Mesa sin uso

La figura 80 nos muestra que el mueble se reubicará en el puesto de sombreado para reducir el tiempo de traslado del trabajador.

Antes

Después

Figura 80 Reubicación de mueble
Fuente: Elaborado por los autores
10) Teflones

La figura 81 nos muestra que se selecciona los teflones por clasificación de puntas de las hormas y se elimina el tiempo muerto en búsqueda.

ANTES

![Imagen de hormas clasificadas en una pila]

DESPUÉS

![Imagen de hormas clasificadas en una mesa]

Figura 81 Hormas clasificadas colocadas en la mesa para su rápida utilización

Fuente: Elaborado por los autores

11) Tachuelas

La figura 82 nos muestra que se realizó la estructura para colocar la horma y su fijación de la tachuela.

ANTES

![Imagen de un operario colocando tachuela]

DESPUÉS

![Imagen de estructura para fijación de horma]

Figura 82 Estructura para fijación de horma

Fuente: Elaborado por los autores
12) Escobas

La figura 83 nos muestra las escobas colgadas por persona responsable de su limpieza por puesto.

![Figura 83 Escobas identificadas](image)

Fuente: Elaborado por los autores

13) Maquinas en desuso

La figura 84 nos muestra que se retiró la máquina que ocupaba espacio innecesariamente generando tiempos muertos en el proceso productivo.

![Figura 84 Retiro de maquina sin uso](image)

Fuente: Elaborado por los autores
14) En cementado

La figura 85 nos muestra que se reubicó los pegamentos encima de una mesa para facilitar el llenado de los envases de pegamento.

Figura 85 Reubicación de pegamentos encima de una mesa

Fuente: Elaborado por los autores

15) Relleno

La figura 86 nos muestra que se implementó una tabla que permita diferenciar los códigos de los rellenos para disminuir los reprocesos.

Figura 86 Tabla de relleno

Fuente: Elaborado por los autores
16) Remalle

La figura 87 nos muestra que se separó al personal en diferentes mesas para evitar comunicación innecesaria que afecta a la productividad.

![ANTES](image1) ![DESPUÉS](image2)

Figura 87 Aumento de mesas para el trabajo del personal

Fuente: Elaborado por los autores

17) Zona de Hormas

La figura 88 nos muestra que se rotuló los códigos con juego de línea además de reorganizar los casilleros por talla colocándolo más cercano al trabajador.

![ANTES](image3) ![DESPUÉS](image4)

Figura 88 Rotulado de las Hormas

Fuente: Elaborado por los autores
18) Rueda de coches

La figura 89 nos muestra que se cambiaron las ruedas de coches con la finalidad de mejorar el flujo de trabajo.

ANTES

![Antes de la rueda de coches](image1.jpg)

DESPÚES

![Después de la rueda de coches](image2.jpg)

Figura 89 Rueda de coches
Fuente: Elaborado por los autores

19) Emplantillado

La figura nos 90 muestra que se reorganizado el estante colocando las plantillas al alcance de los trabajadores.

ANTES

![Antes de la reorganización de plantillas](image3.jpg)

DESPÚES

![Después de la reorganización de plantillas](image4.jpg)

Figura 90 Reorganización de plantillas
Fuente: Elaborado por los autores
20) Envases de tintes

La figura 91 nos muestra que se logró reducir tiempo y espacio en coger sus tintes por tonalidad, se encuentran rotuladas y en su envase adecuado.

ANTES

![Before Image]

DESPUÉS

![After Image]

Figura 91 Envases de tintes organizados
Fuente: Elaborado por los autores

21) Resanado

La figura 92 nos muestra que se rotulo los envases y se colocaron en la repisa para reducir el tiempo de búsqueda por color y espacio.

ANTES

![Before Image]

DESPUÉS

![After Image]

Figura 92 Rotulado de envases
Fuente: Elaborado por los autores
22) Estructura de plantillas

La figura 93 nos muestra que se colocaron en un estante para reducir el tiempo de búsqueda y aumentar la productividad.

![Figura 93 Estante de plantillas organizado](Image)

Fuente: Elaborado por los autores

23) Limpieza de planta

La figura 94 nos muestra que se llegó a reducir a una sola, en base a capacitación y seguimiento.

![Figura 94 Personal necesario en la actividad de limpieza de planta](Image)

Fuente: Elaborado por los autores
24) Envases

La figura 95 nos muestra que se retiraron los envases con el objetivo de mejorar el orden del área.

ANTES

![Imagen de antes](image1)

DESPUÉS

![Imagen de después](image2)

Figura 95 Estación ordenada y limpia
Fuente: Elaborado por los autores

25) Tintes

La figura 96 nos muestra que se rotularon los tintes, se eliminó envases inadecuados y espacio en el puesto de trabajo.

ANTES

![Imagen de antes](image3)

DESPUÉS

![Imagen de después](image4)

Figura 96 Rotulación de envase de tintes
Fuente: Elaborado por los autores
26) Mesa de sopleteado

La figura 97 nos muestra que se redujo el tamaño de la mesa además de quitar los insumos que no eran críticos en el proceso de producción.

![Mesa de sopleteado antes y después](image)

Figura 97 Reducción de espacio y mesa necesaria para el proceso de sopleteado

Fuente: Elaborado por los autores

27) Coches

La figura 98 nos muestra que se retiró los coches del Área de Acabado y se colocó en montaje para los rellenos.

![Cambio de coches entre áreas](image)

Figura 98 Cambio de coches entre áreas

Fuente: Elaborado por los autores
28) Crema

La figura 99 nos muestra que se compró un cucharon para facilitar la obtención de la crema.

Figura 99 Cucharon para facilitar la obtención de la crema
Fuente: Elaborado por los autores

29) Hormas de aluminio

La figura 100 nos muestra que mantenimiento está apoyando en realizar la estructura trasera, para la rotulación por código de hormas y línea reduciendo el tiempo en la mocasinera por búsqueda de hormas y desplazamiento.

Figura 100 Estructura de apoyo para colocación de hormas de aluminio
Fuente: Elaborado por los autores
30) Cortes esparcidos en el suelo

La figura 101 nos muestra que se ordenaron los cortes en una sola sección para reducir el tiempo de inspección por parte de control de calidad.

![Cortes ubicados en una sola sección](image1)

Figura 101 Cortes ubicados en una sola sección
Fuente: Elaborado por los autores

31) Mantenimiento y rotulado de coches

La figura 102 nos muestra que se realizó el mantenimiento de los coches para reducir el tiempo de trabajo y aumentar la productividad en las áreas de montaje y acabado.

![Mantenimiento y rotulado de coches](image2)

Figura 102 Mantenimiento y rotulado de coches
Fuente: Elaborado por los autores
32) Rotulado de hormas

La figura 103 nos muestra que se reagrupa las hormas por sistemas de armado, por ejemplo: vestir, sementado, embolsado, zamora, strobel y rotulándolo por códigos e identificación de colores por suela y planta.

Figura 103 Rotulado e identificado de hormas

Fuente: Elaborado por los autores

b) Implementaciones

33) Conexiones eléctricas

La figura 104 nos muestra que se mejoró el cableado de los cables eléctricos y de red en las áreas de montaje y acabado.

Figura 104 Cableado en las áreas de montaje y acabado

Fuente: Elaborado por los autores
34) Control de hormas

La figura 105 y 106 nos muestra que se implementó el uso de un cuaderno para controlar eficientemente las hormas donde se especifica la fecha, la horma y la persona que ocupó la horma.

Figura 105 Especificaciones para la obtención de hormas

Figura 106 Cuaderno de control de hormas

Fuente: Elaborado por los autores

35) Zona de no conformes

La figura 107 y 108 nos muestra que se delimitó en el área de montaje la zona de no conformes donde las inspectoras de calidad realizan muestreos en el área de previos, línea 1 y línea 2

Figura 107 Zona de no conformes

Figura 108 Zona de no conformes por área

Fuente: Elaborado por los autores
36) Control de cortes y plantas

La figura 109 nos muestra que se colocó un estante que tiene como función contener las plantas faltantes y los cortes que no pasaron control de calidad.

Figura 109 Control de cortes y plantas
Fuente: Elaborado por los autores

37) Delimitación del área

La figura 110 y 111 nos muestra que se rotulo de acuerdo a los procesos y a las líneas de producción que hay dentro de la empresa, por ejemplo, existen los procedimientos previos para cada línea y a su vez cada línea realiza procedimientos de montaje y acabado.

Figura 110 Rotulado del área de montaje
Fuente: Elaborado por los autores
38) Caja de herramientas

La figura 112 nos muestra que se implementó el uso de una caja para colocar las herramientas de los colaboradores para tener la zona de trabajo más ordenada.
39) Líneas amarillas

La figura 113 nos muestra que se implementó las líneas amarillas en las zonas de trabajo para evitar algún accidente; además, para conocer la delimitación entre zonas de trabajo y los lugares de transito dentro de la empresa.

![Figura 113 Líneas amarillas en zona de trabajo](image1)

Fuente: Elaborado por los autores

40) Estructura de control de talón

La figura 114 nos muestra que se implementó esta estructura para eliminar el defecto de alturas de talones desiguales.

![Figura 114 Estructura de control de talón](image2)

Fuente: Elaborado por los autores
41) Muestrario de no conformes

La figura 115 nos muestra que se realizó el muestrario de no conformes por piezas y sus indicadores para reducir la cantidad de productos no conformes por parte de los trabajadores.

Figura 115 Muestrario de no conformes

Fuente: Elaborado por los autores

42) Formato de capacitación del personal nuevo

La figura 116 nos muestra que se implementó el formato de capacitación para acelerar la mejora de la productividad de los colaboradores nuevos indicando que las actividades que desarrollarán dentro del área de trabajo.

Figura 116 Formato de capacitación de colaboradores nuevos

Fuente: Elaborado por los autores
43) Auditoria Segunda S

La figura 117 nos muestra que el equipo líder, realiza las auto-auditorias, al aprobar por 3 personas, se procede a auditar por el Ingeniero del Área, para proceder a la Tercera S

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Auditoria 5S</th>
<th>Resultado</th>
<th>Puntajes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calimod</td>
<td>Seiton - Ordenar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATOS SECTOR</th>
<th>PERSONAS</th>
<th>MAESTRO/PUNTO ASIGNABLE</th>
<th>30</th>
<th>PREPARACION EQUIPO</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFICAR</td>
<td>1S Clasificar</td>
<td>30</td>
<td>1</td>
<td>20 Ordenar</td>
<td>-</td>
</tr>
<tr>
<td>RESP. AREA</td>
<td>Firma: Obtenida:</td>
<td>Máximo Puntaje: Aceptable</td>
<td>30</td>
<td>Puntaje: Obtenido:</td>
<td>-</td>
</tr>
<tr>
<td>AUDITOR LÍDER</td>
<td>% AUDITORIA 13 Clasificar:</td>
<td>0%</td>
<td>Preguntas mandatorias:</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>AUDITOR COLAB</td>
<td>2S Ordenar</td>
<td>Máximo Puntaje:</td>
<td>120</td>
<td>Puntaje: Obtenido:</td>
<td>-</td>
</tr>
<tr>
<td>AUDITADO 1</td>
<td>% AUDITORIA 2S Ordenar:</td>
<td>0%</td>
<td>META:</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>AUDITADO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENFOQUE

1. ¿Está conformado el Equipo de trabajo, su líder y áreas de responsabilidad?
2. ¿Los integrantes están capacitados y conocen la aplicación de las 5S?
3. ¿El equipo tiene un Plan de trabajo actualizado?

<table>
<thead>
<tr>
<th>PERSONAS</th>
<th>Logrado</th>
<th>LOGRO</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMO</td>
<td>PARCEL</td>
<td>MINIMO</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Clasificar

4. ¿HAY LINEAS EN SU ÁREA DE TRABAJO? ¿SE HAN RESUELTO EL 100% DE LOS TECNOLOGOS?
5. ¿Las gráficas de los indicadores de desempeño se encuentran actualizadas?
6. ¿Las vías de circulación se encuentran despejadas? Pasillos, vías de escape y áreas de trabajo.

<table>
<thead>
<tr>
<th>CLASIFICAR</th>
<th>Logrado</th>
<th>NUMERO CASOS NEGATIVOS</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMO</td>
<td>PARCEL</td>
<td>MINIMO</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Continúa…
Figura 117 Estándar de limpieza de los colaboradores

Fuente: Elaborado por los autores

44) Planilla de colaboradores que participaron en la implementación de la 2S

Figura 118 Planilla de la implementación de la Segunda S

Fuente: Elaborado por los autores

La figura 118 nos muestra la planilla de la implementación de la segunda S.
Resumen de la Segunda S

-¿En qué consiste la 2S?

Consiste en colocar cada elemento necesario en un lugar definido e identificado, de modo que pueda encontrarse, retirarse y reponerse a su lugar de manera rápida y sencilla.

-¿Cuáles son las herramientas principales que se utilizan en la metodología de 2S?

- Demarcar.

- Rotular.

- Elementos de gestión visual (flechas, círculos para los manómetros, etc.)

-¿Qué es una LUP?

LUP significa Lección de un Punto o lección de unos conceptos. Es una herramienta para aprender, enseñar y aplicar conocimientos.

-Objetivo de una LUP

Una LUP permite tener los conocimientos a la mano cuando sean necesarios.

Una LUP permite estandarizar tareas o procedimientos.
6.3.3. Implementación de la Tercera S.

La figura 119 nos muestra el plan de actividades de la tercera S, sus indicadores y metodología.

La figura 120 nos muestra las actividades que se deben realizar durante la implementación de la tercera S.
PLAN DE TRABAJO DE TARJETAS VERDES

Figura 121 Plan de trabajo de las tarjetas verdes

Fuente: Elaborado por los autores

Figura 122 Plan de trabajo de la tercera S

Fuente: Elaborado por los autores
La figura 123 nos muestra el registro de las tarjetas verdes.

Fuente: Elaborado por los autores

La figura 123 nos muestra el registro de las tarjetas verdes.

La figura 124 nos muestra el formato de cumplimiento de estándar de limpieza.

Fuente: Elaborado por los autores

La figura 124 nos muestra el formato de cumplimiento de estándar de limpieza.
La figura 124 nos muestra el formato de cumplimiento del estándar de limpieza.

La figura 125 nos muestra el plan de acción de las tarjetas verdes.

La figura 126 nos muestra el formato del flujo de lección en un punto.

<table>
<thead>
<tr>
<th>N°</th>
<th>Tarjeta</th>
<th>Tiempo</th>
<th>Responsable</th>
<th>Fecha de realización</th>
<th>Chequero</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>000137</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>2</td>
<td>000138</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>3</td>
<td>000139</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>4</td>
<td>000215</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>5</td>
<td>000216</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>6</td>
<td>000217</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>7</td>
<td>000218</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>8</td>
<td>000219</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>9</td>
<td>000220</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>10</td>
<td>000221</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>11</td>
<td>000222</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>12</td>
<td>000223</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>13</td>
<td>000224</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>14</td>
<td>000225</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
<tr>
<td>15</td>
<td>000226</td>
<td>15 min</td>
<td>Jorge Vidal</td>
<td>1-Ago-19</td>
<td>Terminado</td>
</tr>
</tbody>
</table>

Figura 125 Plan de acción de las tarjetas verdes
Fuente: Elaborado por los autores
La figura 125 nos muestra el plan de acción de las tarjetas verdes.

Figura 126 Tipo de LUP
Fuente: Elaborado por los autores
La figura 126 nos muestra el formato del flujo de lección en un punto.
Figura 127 Indicador de cumplimiento de implementación LUP

Fuente: Elaborado por los autores

La figura 127 nos muestra el formato de cumplimiento de implementación del flujo de lección en un punto.
RESULTADO DE LA SEGUNDA S:

<table>
<thead>
<tr>
<th></th>
<th>PARES</th>
<th>H-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTES DE LA S</td>
<td>1,030</td>
<td>11.25</td>
</tr>
<tr>
<td>DESPUÉS DE LA S</td>
<td>1,092</td>
<td>11.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ANTES</th>
<th>DESPUÉS</th>
<th>MEJORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pares producidos</td>
<td>1,030</td>
<td>1,092</td>
<td>62</td>
</tr>
<tr>
<td>Tiempo muerto</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 9 nos muestra el ahorro de la implementación de la segunda S.

6.3.4. Implementación de la Cuarta S

➢ Que – Supone el desarrollo de un sistema claro para mantener los resultados logrados con la constante aplicación de los 3 pasos anteriores.

➢ Como – Implemente elementos de control visual. – Estandarice las 1era, 2da y 3ra S. – Promueva actitud positiva. – Evite cualquier tipo de contaminación. – Mantenga siempre limpios sus lugares de trabajo y los servicios sanitarios. – Cree mecanismos de evaluación para mejorar las condiciones de trabajo e identificar las áreas o puntos críticos relacionados con las 5’S.

➢ Beneficios – Mayor motivación. – Ambiente de trabajo agradable y seguro. – Mejora la imagen de los colaboradores y de la empresa frente a los clientes y la comunidad. – Mejora en el clima laboral.
La figura 128 nos muestra el molde de herramientas implementado durante la aplicación de las 5´s,

- La metodología busca mantener los logros alcanzados con la aplicación de las 3 primeras S.

- Este proceso implica la confección de estándares de distinto tipo: – Limpieza. – Inspección Máquinas e instalaciones. – Seguridad. – Entrega de turnos • El estándar debe, entre otros objetivos: – Mantener el estado de orden y limpieza alcanzado con las 3 primeras S. – Contener los elementos necesarios para realizar el cumplimiento de las condiciones que se busca mantener.

Figura 129 Capacitación con los líderes 5s
Fuente: Elaborado por los autores

La figura 129 nos muestra los formatos de capacitación con los líderes 5’s.
Figura 130 Cumplimiento de estándar de inspección

Fuente: Elaborado por los autores

La figura 130 nos muestra el cumplimiento de estándar de inspección que describe la frecuencia de limpieza por zona.
La figura 131 muestra el plan de trabajo para la implementación de las 5’s, por actividad, responsable y tiempo.
La figura 132 muestra el armario de limpieza rotulado según estructura como la escoba, recogedor y guantes de epp’s, con la finalidad de colocar cada cosa en su lugar.

La figura 133 nos muestra la zona de herramientas de las áreas de montaje y acabado.
La figura 134 nos muestra la caja de accesorios como resultado de las 5´s, cada cosa en su lugar.

La figura 135 nos muestra la gestión visual (manómetros y señalética) como resultados de las 5´s.
La figura 136 nos muestra el estándar de limpieza del personal. Se observa el estado de la empresa luego de la implementación de las 5´s y como debe mantenerse.

La figura 137 nos muestra los resultados de la implementación de la cuarta S, estandarizando las S que fueron implementadas y manteniendo su impacto.
Auditoría de la Cuarta S

La figura 138 nos muestra el formato de la auditoría de la cuarta S.

6.3.5. Implementación de la Quinta S

Que – Crear hábitos en todas las personas para que sus actividades sigan rigurosamente el estándar, para lograr una mejor convivencia.

➢ Como – Establezca principios, valores. – Establezca modelos sencillos. – Prepare material formativo. – Cree nuevos hábitos, ritos, símbolos. – Fije sus propias metas. – Mejore su comunicación. – Aplique persistentemente las 5’s para mejorar su CALIDAD DE VIDA

➢ Beneficios. – Propicia el trabajo en equipo. – Mejora la comunicación. – Desarrolla sentido de pertenencia. – Descubre líderes, genera autodisciplina. – Genera organización visual. – Aprovecha el tiempo y los recursos. – Facilita acciones de mejoramiento continuo
La figura 139 nos muestra el seguimiento que se realiza a todas las S para obtener los resultados y el desempeño operacional en base a indicadores.

Auditoría de la 5’s

<table>
<thead>
<tr>
<th>DISCIPLINA</th>
<th>Puntaje</th>
<th>LOGRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>¿Hay desarrollo de nuevas lecciones de un Punto para el área?</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>¿Las lecciones de un Punto son transmitidas frecuentemente?</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>¿Todos los empleados usan EPP correctamente?</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>¿Existen papeles, productos, basura en general dejados en el piso?</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>¿Realizan las auto auditorias y auditorias programadas?</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>¿Se cumple con el programa de actividades y se le está dando solución al listado de problemas y/o mejoras propuestas para dar</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>¿Cumplen con los estándares formalizados para el mantenimiento del orden?</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>¿Cumplen con los estándares formalizados para el mantenimiento de la limpieza?</td>
<td>-</td>
</tr>
</tbody>
</table>

La figura 140 nos muestra el formato de auditoría de la quinta S.
6.4. Comprobación de hipótesis

Hipótesis Especifica N°1

La hipótesis específica señala que a través de la implementación del Lean Manufacturing, mejora la productividad en la empresa Calimod.

Con la finalidad de comprobar la hipótesis general se procedió a ingresar los datos al software estadístico SPSS (Ver tabla 10), estos datos fueron registrados antes de la implementación y después de la implementación (Ver anexo 12 y 17).

Tabla 10 Datos antes y después de la productividad

<table>
<thead>
<tr>
<th></th>
<th>ProductividadA</th>
<th>ProductividadD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>3.43</td>
<td>3.86</td>
</tr>
<tr>
<td>1.01</td>
<td>3.41</td>
<td>3.89</td>
</tr>
<tr>
<td>1.02</td>
<td>3.66</td>
<td>4.05</td>
</tr>
<tr>
<td>1.03</td>
<td>3.57</td>
<td>3.98</td>
</tr>
<tr>
<td>1.04</td>
<td>3.43</td>
<td>4.13</td>
</tr>
<tr>
<td>1.05</td>
<td>3.70</td>
<td>4.08</td>
</tr>
<tr>
<td>1.06</td>
<td>3.87</td>
<td>4.02</td>
</tr>
<tr>
<td>1.07</td>
<td>3.46</td>
<td>3.77</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 10 nos muestra los datos obtenidos de la productividad antes y después de la implementación.

Se procede a realizar la prueba de normalidad contrastando la normalidad de los datos obtenidos de la productividad; se utilizó el test de Shapiro-Wilk debido a que nuestra muestra es menor a 50, en caso contrario se trabajaría con el test de kolmogorov-Smirnov.
Tabla 11 Prueba de normalidad de la productividad

Pruebas de normalidad

<table>
<thead>
<tr>
<th></th>
<th>Estadístico</th>
<th>Gl</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProductividadA</td>
<td>0,877</td>
<td>8</td>
<td>0,178</td>
</tr>
<tr>
<td>ProductividadD</td>
<td>0,960</td>
<td>8</td>
<td>0,808</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 11 nos muestra la prueba de normalidad de la productividad.

Se acepta la normalidad de las muestras debido a que los niveles de significancia obtenidos 0,178 y 0,808 son mayores que 0,050.

A continuación, se realiza la comprobación de hipótesis mediante la prueba T para muestras relacionadas debido a que estamos ingresando datos de antes y después de la implementación.

Tabla 12 Comparativo antes y después de la productividad

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProductividadA</td>
<td>3,5663</td>
<td>8</td>
</tr>
<tr>
<td>ProductividadD</td>
<td>3,9725</td>
<td>8</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 12 nos muestra el comparativo antes y después de la productividad.
Tabla 13 Prueba "T" de la productividad

Prueba de muestras emparejadas

<table>
<thead>
<tr>
<th>Par 1</th>
<th>ProductividadA - ProductividadD</th>
<th>T</th>
<th>Gl</th>
<th>Sig. (bilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-7.413</td>
<td>7</td>
<td>.000</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 13 nos muestra la prueba “T” de la productividad.

H₀: La productividad se mantiene igual antes y después de la implementación del Lean Manufacturing.

H₁: La productividad es mayor después de la implementación del Lean Manufacturing.

En la tabla 13 se aprecia que el nivel de significancia es de 0,000, siendo menor a 0,050, con esta información se procede a rechazar la hipótesis Nula H₀ y se acepta la hipótesis alternativa H₁.

Con la información obtenida se pueda afirmar que la diferencia observada en la productividad antes y después de la implementación es estadísticamente significativa.

Hipótesis Específica N°2

La hipótesis específica señala que a través de la implementación del Lean Manufacturing, mejora el tiempo de ciclo en la empresa Calimod.
Con la finalidad de comprobar la hipótesis general se procedió a ingresar los datos al software estadístico SPSS (Ver tabla 14), estos datos fueron registrados antes de la implementación y después de la implementación (Ver Anexo 13 y 18).

Tabla 14 Datos antes y después del tiempo de ciclo

<table>
<thead>
<tr>
<th></th>
<th>TiempoCicloA</th>
<th>TiempoCicloD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,94</td>
<td>3,23</td>
<td></td>
</tr>
<tr>
<td>2,30</td>
<td>2,25</td>
<td></td>
</tr>
<tr>
<td>2,68</td>
<td>2,44</td>
<td></td>
</tr>
<tr>
<td>2,54</td>
<td>2,31</td>
<td></td>
</tr>
<tr>
<td>2,67</td>
<td>2,21</td>
<td></td>
</tr>
<tr>
<td>3,84</td>
<td>3,58</td>
<td></td>
</tr>
<tr>
<td>5,02</td>
<td>4,44</td>
<td></td>
</tr>
<tr>
<td>3,06</td>
<td>2,68</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 14 nos muestra los datos obtenidos del tiempo de ciclo antes y después de la implementación.

Se procede a realizar la prueba de normalidad contrastando la normalidad de los datos obtenidos del tiempo de ciclo; se utilizó el test de Shapiro-Wilk debido a que nuestra muestra es menor a 50, en caso contrario se trabajaría con el test de kolmogorov-Smirnov.

Tabla 15 Prueba de normalidad del tiempo de ciclo

Pruebas de normalidad

<table>
<thead>
<tr>
<th></th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estadístico</td>
</tr>
<tr>
<td>TiempoCicloA</td>
<td>.884</td>
</tr>
<tr>
<td>TiempoCicloD</td>
<td>.850</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 15 nos muestra la prueba de normalidad del tiempo de ciclo.
Se acepta la normalidad de las muestras debido a que los niveles de significancia obtenidos 0,206 y 0,095 son mayores que 0,050.

A continuación, se realiza la comprobación de hipótesis mediante la prueba T para muestras relacionadas debido a que estamos ingresando datos de antes y después de la implementación.

Tabla 16 Comparativo antes y después del tiempo de ciclo

<table>
<thead>
<tr>
<th>Estadísticas de muestras emparejadas</th>
<th>Media</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiempoCicloA</td>
<td>3,2562</td>
<td>8</td>
</tr>
<tr>
<td>TiempoCicloD</td>
<td>2,8925</td>
<td>8</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores
La tabla 16 nos muestra el comparativo antes y después del tiempo de ciclo.

Tabla 17 Prueba "T" del tiempo de ciclo

<table>
<thead>
<tr>
<th>Prueba de muestras emparejadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Par 1</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores
La tabla 17 nos muestra la prueba “T” del tiempo de ciclo.
H0: El tiempo de ciclo se mantiene igual antes y después de la implementación del Lean Manufacturing.

H1: El tiempo de ciclo se reduce después de la implementación del Lean Manufacturing.

En la tabla 17 se aprecia que el nivel de significancia es de 0,002, siendo menor a 0,050, con esta información se procede a rechazar la hipótesis Nula H_0 y se acepta la hipótesis alternativa H_1.

Con la información obtenida se pueda afirmar que la diferencia observada en el tiempo de ciclo antes y después de la implementación es estadísticamente significativa.

Hipótesis Específica N°3

La hipótesis específica señala que a través de la implementación del Lean Manufacturing, reduce los costos de los productos no conforme en la empresa Calimod.

Con la finalidad de comprobar la hipótesis general se procedió a ingresar los datos al software estadístico SPSS (Ver tabla 18), estos datos fueron registrados antes de la implementación y después de la implementación (Ver Anexo 14 y 19).

Tabla 18 Datos antes y después de los costos de los productos no conforme

<table>
<thead>
<tr>
<th></th>
<th>Costos P NCA</th>
<th>Costos P NCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977,00</td>
<td>1658,00</td>
<td></td>
</tr>
<tr>
<td>1964,00</td>
<td>1713,00</td>
<td></td>
</tr>
<tr>
<td>2143,00</td>
<td>1843,00</td>
<td></td>
</tr>
<tr>
<td>1874,00</td>
<td>1637,00</td>
<td></td>
</tr>
<tr>
<td>2364,00</td>
<td>1998,00</td>
<td></td>
</tr>
<tr>
<td>2313,00</td>
<td>1832,00</td>
<td></td>
</tr>
<tr>
<td>1974,00</td>
<td>1778,00</td>
<td></td>
</tr>
<tr>
<td>1987,00</td>
<td>1748,00</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 18 nos muestra los datos obtenidos antes y después de los costos.
Se procede a realizar la prueba de normalidad contrastando la normalidad de los datos obtenidos de los costos de los productos no conforme; se utilizó el test de Shapiro-Wilk debido a que nuestra muestra es menor a 50, en caso contrario se trabajaría con el test de kolmogorov-Smirnov.

Tabla 19 Prueba de normalidad de los costos de productos no conforme

<table>
<thead>
<tr>
<th>Pruebas de normalidad</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shapiro-Wilk</td>
<td></td>
</tr>
<tr>
<td>Estadístico</td>
<td></td>
<td>gl</td>
</tr>
<tr>
<td>CostosPNCA</td>
<td>0.847</td>
<td>8</td>
</tr>
<tr>
<td>CostosPNCD</td>
<td>0.945</td>
<td>8</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 19 nos muestra la prueba de normalidad de los costos.

Se acepta la normalidad de las muestras debido a que los niveles de significancia obtenidos 0.088 y 0.660 son mayores que 0.050.

A continuación, se realiza la comprobación de hipótesis mediante la prueba T para muestras relacionadas debido a que estamos ingresando datos de antes y después de la implementación.
Tabla 20 Comparativo de costos de los productos no conforme

Estadísticas de muestras emparejadas

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par 1</td>
<td>CostosPNCA</td>
<td>2073,2500</td>
</tr>
<tr>
<td></td>
<td>CostosPNCD</td>
<td>1775,8750</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 20 nos muestra el comparativo de los costos.

Tabla 21 Prueba "T" de los costos de los productos no conforme

Prueba de muestras emparejadas

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>Gl</th>
<th>Sig. (bilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par 1</td>
<td>CostosPNCA</td>
<td>9,312</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>CostosPNCD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaborado por los autores

La tabla 21 nos muestra la prueba “T” de los costos.
H₀: Los costos de los productos no conforme se mantienen igual antes y después de la implementación del Lean Manufacturing.

H₁: Los costos de los productos no conformes se reducen después de la implementación del Lean Manufacturing.

En la tabla 21 se aprecia que el nivel de significancia es de 0,000, siendo menor a 0,050, con esta información se procede a rechazar la hipótesis Nula H₀ y se acepta la hipótesis alternativa H₁.

Con la información obtenida se pueda afirmar que la diferencia observada en los costos de los productos no conforme antes y después de la implementación es estadísticamente significativa.
6.4.4. Presentación de resultados

A continuación, se presentan los resultados de la implementación del Lean Manufacturing a través de las capacitaciones al personal con la finalidad de reducir los productos no conforme.

<table>
<thead>
<tr>
<th>ÁREA DE MONTAJE: 8 colaboradores</th>
<th>Cantidad de colaboradores</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO COMPETENTE</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>NORMAL</td>
<td>1</td>
<td>13%</td>
</tr>
<tr>
<td>COMPETENTE</td>
<td>7</td>
<td>88%</td>
</tr>
<tr>
<td>MUY COMPETENTE</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figura 141 Resumen de evaluación a trabajadores en el área de montaje

Fuente: Elaborado por los autores

La figura 141 muestra el resumen de evaluación de los trabajadores por puesto y rendimiento en el área de montaje.
La figura 142 muestra el resumen de evaluación a trabajadores en el área de acabado.

Fuente: Elaborado por los autores

La figura 142 muestra el resumen de evaluación a trabajadores por puesto y rendimiento en el área de acabado.

La figura 143 muestra el formato de talla de zapatos como consecuencia de la implementación del Lean Manufacturing.

ÁREA DE ACABADO: 8 colaboradores

<table>
<thead>
<tr>
<th>Categoría</th>
<th>No. de Colaboradores</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO COMPETENTE</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>NORMAL</td>
<td>1</td>
<td>13%</td>
</tr>
<tr>
<td>COMPETENTE</td>
<td>7</td>
<td>88%</td>
</tr>
<tr>
<td>MUY COMPETENTE</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8</td>
<td>100%</td>
</tr>
</tbody>
</table>

TABLA DE COLORES POR TALLA CALIMOD

<table>
<thead>
<tr>
<th>TALLA</th>
<th>COLORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
</tr>
</tbody>
</table>

Figura 143 Formato de talla de zapatos

Fuente: Elaborado por los autores
La figura 144 nos muestra la talla de código de cueros y su descripción con sus respectivos espesores.
<table>
<thead>
<tr>
<th>CODIGO</th>
<th>DESCRIPCION</th>
<th>CODIGO</th>
<th>DESCRIPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>NEGRO</td>
<td>075</td>
<td>MORADO</td>
</tr>
<tr>
<td>004</td>
<td>NEGRO LAMY</td>
<td>078</td>
<td>TAUPE</td>
</tr>
<tr>
<td>006</td>
<td>BRANDY</td>
<td>080</td>
<td>GRIS</td>
</tr>
<tr>
<td>007</td>
<td>COGÑAC</td>
<td>082</td>
<td>OLIVA</td>
</tr>
<tr>
<td>010</td>
<td>MARRON</td>
<td>089</td>
<td>CROMO</td>
</tr>
<tr>
<td>011</td>
<td>MORO</td>
<td>090</td>
<td>BLANCO</td>
</tr>
<tr>
<td>012</td>
<td>APACHE</td>
<td>091</td>
<td>HUESO</td>
</tr>
<tr>
<td>014</td>
<td>CAMEL</td>
<td>094</td>
<td>NUTRIA</td>
</tr>
<tr>
<td>015</td>
<td>NATURAL</td>
<td>099</td>
<td>WISKY</td>
</tr>
<tr>
<td>017</td>
<td>HABANO</td>
<td>120</td>
<td>AFRICANO</td>
</tr>
<tr>
<td>019</td>
<td>CAFÉ</td>
<td>124</td>
<td>NEBLINA</td>
</tr>
<tr>
<td>020</td>
<td>ROJO</td>
<td>137</td>
<td>TIBET</td>
</tr>
<tr>
<td>021</td>
<td>CARAMELO</td>
<td>138</td>
<td>MAZARINE</td>
</tr>
<tr>
<td>023</td>
<td>VINO</td>
<td>172</td>
<td>AZUL BIC</td>
</tr>
<tr>
<td>026</td>
<td>LADRILLO</td>
<td>181</td>
<td>RAT</td>
</tr>
<tr>
<td>031</td>
<td>COBRE</td>
<td>183</td>
<td>DARK BROWN</td>
</tr>
<tr>
<td>032</td>
<td>CASTAÑO</td>
<td>184</td>
<td>NEGRO / CANARIO</td>
</tr>
<tr>
<td>040</td>
<td>AMARILLO</td>
<td>190</td>
<td>MILITAR</td>
</tr>
<tr>
<td>043</td>
<td>DORADO</td>
<td>191</td>
<td>NEGRO / AZULINO</td>
</tr>
<tr>
<td>047</td>
<td>CANELA</td>
<td>192</td>
<td>MORO / ROJO</td>
</tr>
<tr>
<td>049</td>
<td>TAN</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>VERDE PETROLEO</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>053</td>
<td>VERDE MILITAR</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>AZUL</td>
<td>A63</td>
<td>AZUL JEAN</td>
</tr>
<tr>
<td>064</td>
<td>CEREJA</td>
<td>260</td>
<td>ROJO/AZUL</td>
</tr>
<tr>
<td>065</td>
<td>ACERO</td>
<td>269</td>
<td>GRAFITO</td>
</tr>
<tr>
<td>066</td>
<td>AZUL MARINO</td>
<td>278</td>
<td>MARSALA</td>
</tr>
<tr>
<td>074</td>
<td>PALO ROSA</td>
<td>280</td>
<td>NUDE</td>
</tr>
</tbody>
</table>

Figura 145 Tabla de códigos de colores

Fuente: Elaborado por los autores

La figura 145 nos muestra la tabla de códigos de colores del cuero
La figura 146 nos muestra el resumen de acabados, según tipo de cuero con sus denominaciones de tipos de acabados, tomando en cuenta si es cuero terminado o no.
La figura 147 nos muestra el tiempo por operación en el área de montaje.

La figura 148 nos muestra el tiempo por operación en el área de acabado.
La figura 149 nos muestra el formato de check list de evaluación interna de reclamo N°1, para saber dónde y cómo se produjo el defecto en el cuero.

Fuente: Elaborado por los autores
La figura 150 nos muestra el formato de check list de evaluación interna de reclamo N°2, para saber dónde y cómo se produjo el defecto en el cuero.
CONCLUSIONES

1) Se concluye que implementar la filosofía del Lean Manufacturing permite reducir la cantidad de productos no conforme que se generaban por un ineficiente control de procesos, así mismo, mantener la filosofía Lean como cultura en la operación permite el desarrollo de mejora continua.

2) Se incrementó la productividad en las áreas de montaje y acabado en un 5% y 13.73% respectivamente, lo cual confirma que se implementó exitosamente la filosofía del Lean Manufacturing en la empresa CALIMOD.

3) Se redujo el tiempo de ciclo en las áreas de montaje y acabado en un 7.5% Y 31.11% respectivamente, lo cual confirma que se implementó exitosamente la filosofía del Lean Manufacturing en la empresa CALIMOD.

4) Se redujo los costos de los productos no conforme en las áreas de montaje y acabado en un 10.92% y 32.43% respectivamente, lo cual confirma que se implementó exitosamente la filosofía del Lean Manufacturing en la empresa CALIMOD.
RECOMENDACIONES

1) Se debe tratar la filosofía del Lean Manufacturing como cultura organizacional, ya que una vez implementada, no requiere una fuerte inversión económica, sin embargo, permite la mejora continua de los procesos que se realizan en las áreas de montaje y acabado, en base a cultura y concientización con el personal, buscando siempre la reducción de la cantidad de productos no conforme.

2) Implementar el Poka-Yoke, para aumentar la productividad en las áreas de montaje y acabado, siendo herramienta del Lean Manufacturing.

3) Implementar la herramienta del SMED, para reducir el tiempo de ciclo en las áreas de montaje y acabado, siendo una herramienta del Lean Manufacturing.

4) Implementar la Gestión de la Calidad Total, para reducir los costos de los productos no conforme en las áreas de montaje y acabado, siendo una herramienta del Lean Manufacturing.
REFERENCIAS BIBLIOGRÁFICAS

Becerra, K; Carbajal. X (2019). Propuesta de implementación de herramientas lean: 5s y estandarización en el proceso de desarrollo de producto en pymes peruanas exportadoras del sector textil de prendas de vestir de tejido de punto de algodón. (Tesis de pregrado) Lima: Universidad Peruana de Ciencias Aplicadas.

Calderón, F. (2014). Diagnóstico y propuesta de mejora del proceso de control de la calidad en una empresa que elabora aceites lubricantes automotrices e industriales utilizando herramientas y técnicas de la calidad. (Tesis de pregrado) Lima: Pontífica Universidad Católica del Perú.

Costta, G; Guevara, J (2015, p.43). Elaboración de un plan de mejora para el mantenimiento preventivo en los sistemas de aire acondicionado de la red de telefonía del peru zonal norte, basado en la metodología ishikawa - pareto. (Tesis de pregrado) Trujillo: Universidad Privada Antenor Orrego.

Flores, N; Gutiérrez, Y; Martínez, Y; Maycot; M (2015). Implementación del método de las 5s´s en el área de corte de una empresa productora de calzado. (Tesis de pregrado) Ciudad de México: Instituto Politécnico Nacional.

Gonzáles, J. (2013). Las 5 “s” una herramienta para mejorar la calidad, en la oficina tributaria de quetzaltenango, de la superintendencia de administración tributaria en la región occidente. (Tesis de pregrado) Quetzaltenango: Universidad Rafael Landívar.

ANEXOS

Anexo 1 Calzado casual

Fuente: Elaborado por los autores

Anexo 5 Calzado de vestir

Fuente: Elaborado por los autores
Anexo 6 Ficha técnica del calzado de vestir

Fuente: Elaborado por los autores
Ficha Técnica de Piso

<table>
<thead>
<tr>
<th>LÍNEA:</th>
<th>CDU</th>
<th>PESO: 434 KG X PAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMA:</td>
<td>2066 NUEVO</td>
<td></td>
</tr>
<tr>
<td>TEMPORADA:</td>
<td>P-V / 2020-01</td>
<td></td>
</tr>
<tr>
<td>SERIE:</td>
<td>38-44</td>
<td></td>
</tr>
<tr>
<td>SISTEMA:</td>
<td>STROBEL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIE DE CORTE</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIE DE PLANTA</td>
<td>38-39</td>
<td>38-39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43-44</td>
<td>43-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIE DE TACO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIE DE Tapilla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MARCA:</th>
<th>CALIMOD</th>
<th>LIJADO: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL:</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>PISO:</td>
<td>PLANTA STANFORD BANDA CREMA 53308 / MARRON MANCHESTER 94827</td>
<td></td>
</tr>
<tr>
<td>COSTURA EXT.:</td>
<td>HILO COLOR HUESO #20</td>
<td>COLOR: 047 - 048 - 024 - 007 - 020 - 190</td>
</tr>
<tr>
<td>COSTURA INT.:</td>
<td>HILO COLOR BEIGE #20</td>
<td>FORRO: BADAÑA</td>
</tr>
<tr>
<td>PISO:</td>
<td>PLANTA STANFORD BANDA CREMA 53308 / PISO AZUL MANCHESTER 22446</td>
<td></td>
</tr>
<tr>
<td>COSTURA EXT.:</td>
<td>HILO COLOR HUESO #20</td>
<td>CUERO: O60</td>
</tr>
<tr>
<td>COSTURA INT.:</td>
<td>HILO COLOR BEIGE #20</td>
<td>FORRO: BADAÑA</td>
</tr>
<tr>
<td>FALSA:</td>
<td>CDP</td>
<td></td>
</tr>
<tr>
<td>RETAISON:</td>
<td>NO LLEVA</td>
<td></td>
</tr>
<tr>
<td>CAMBREIRA:</td>
<td>NO LLEVA</td>
<td></td>
</tr>
<tr>
<td>RELLENADO PISO:</td>
<td>UBIC CARTON PIEDRA</td>
<td>RELLENADO CORTE: NO LLEVA</td>
</tr>
</tbody>
</table>

Anexo 7 Ficha técnica del calzado casual

Fuente: Elaborado por los autores
Ficha de Especificaciones Técnicas de Calidad

<table>
<thead>
<tr>
<th>Línea:</th>
<th>Estilo:</th>
<th>Ficha:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niños:</td>
<td>Otoño Invierno</td>
<td>N°01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Fecha:</th>
<th>N° de Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moca sin 009</td>
<td>14/05/2016</td>
<td></td>
</tr>
</tbody>
</table>

N° de Piezas

<table>
<thead>
<tr>
<th>N° de Piezas</th>
<th>Costura</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 piezas</td>
<td></td>
</tr>
</tbody>
</table>

- **Costura**: Es cocido en las venas para darle mayor refuerzo a cualquier abertura.

Cuero

- **Se utiliza el mejor cuero para la fabricación del calzado en tonos bajos**

Huilo

- **De rayon, de alta tenacidad para costura de alta resistencia y el color va de acuerdo con el color del cuero**

Forro

- **El forro es antitranpirante con un espesor de 3.8mm**

Planta

- **La planta que se utiliza para este calzado es goma**

Medidas del Logo

Contrafuerte

Anexo 8 Ficha técnica del calzado

Fuente: Elaborado por los autores
Anexo 9 Descripción del calzado

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th>N°</th>
<th>OPERACIÓN</th>
<th>PARÁMETRO</th>
<th>EQUIPO</th>
<th>MATERIAL</th>
<th>INSUMOS</th>
<th>ESPECIFICACIONES</th>
<th>TOLERANCIA</th>
<th>CAUSA DE RECHAZO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CANTIDAD Y DETALLES</td>
<td>PARES A COP</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>VERIFICAR DETALLES Y CONTAR LA CANTIDAD DE PARES DE ACUERDO AL ENCARGADO EN LA COP</td>
<td>NINGUNA</td>
<td>INCOMPLETO</td>
</tr>
<tr>
<td>2</td>
<td>REVISTAS COSTURA</td>
<td>PUNTADA Y COM OSOT</td>
<td>* DAPA</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>PUNTADAS Y COMAS BRILLANTES, CALzas, Tela, COSTURA MUY TENSIONADA, LARGO</td>
<td>NINGUNA</td>
<td>NO CUMPLE ESPECIFICACIONES</td>
</tr>
<tr>
<td>3</td>
<td>DEFECTOS DE LA PAL</td>
<td>CONDICION DEL QUECO Y FURADO</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>PIELIEGAS, LACAS, PAYAS, MAL PINTURAS O DESBASTADAS</td>
<td>NINGUNA</td>
<td>ELASTICIDAD INSUFICIENTE, LACAS, PAYAS</td>
</tr>
<tr>
<td>4</td>
<td>LONG. CORRECTO/ CORRIDA</td>
<td>SIMETRIA</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>LARGO DE LARGO NO CORRESPONDE A SIMETRIA DEL PAR SIMETRIA DE MI</td>
<td>NINGUNA</td>
<td>ASIMETRIA</td>
</tr>
<tr>
<td>5</td>
<td>RECORTES</td>
<td>TAMAÑO</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>NINGUNA</td>
<td>RECORTES DE POLIETIEN, INTERIOS, EXTERNOS Y ELASTICOS DE ACUERDO AL MODEL</td>
<td>NINGUNA</td>
<td>TAMAÑO incorrecto</td>
</tr>
</tbody>
</table>

Anexo 10 Especificaciones técnicas del proceso de montaje y acabado

Fuente: Elaborado por los autores
CALIMOD

INSTRUCCIONES

II7 (PB-PP.001)

MONTAJE

1. PUESTO DE TRABAJO

Armadora de Punta

II. INSTRUCTIVO DEL PUESTO

1. Colocar el corte plano en la máquina vaporizadora, una vez marcado se corta el corte (en este momento dejará otro corte-aparso en la vaporizadora) y montar el primer corte-aparso a su forma.

2. Llevar el corte-aparso en su forma hacia la máquina Armadora de Punta y dar un jalón al corte-aparso y verifique que el corte-aparso esté centrado.

3. Colocar en la máquina, asegurándose de que el corte-aparso esté centrado.

4. Luego accionar la máquina en automático (si es necesario colocar una protección, como una balanza, para no marcar el corte).

5. Mientras se está presionando, el operador podrá esperar otro corte y hacer el procedimiento anterior. Luego de presionar sostener el corte-aparso ya colizado en forma y colocar otro corte-aparso en su lugar.

6. Inmediatamente después clarará el corte en la punta del corte-aparso colizado sólo si fuese necesario, para que este quede sujeto a la forma.

7. Luego de haber terminado dejará el corte aparrado por la máquina, sacará su par, y verificará si están formarados, de ser así lo colocará en el coche siempre manteniendo el orden de llegada, sino, centrará los cortes para que queden iguales.

III. PARÁMETROS DE CALIDAD

1. El corte debe estar 5 segundo en la vaporizadora
2. Regular la Presión de la máquina según pedido
3. Verificar que estén SIN PLEGUES
4. Verificar que no estén SOPLETADO

Fuentes: HUGUS, MEVIS
ARMADOR DE PUNTA

JORGE VIDAL
SUPERVISOR DE MONTAJE

KATHERINE GUEVARA
ANAUSTADE PRODUCCION

Anexo 11 Instructivo de armado de punta

Fuente: Elaborado por los autores
Anexo 15 Implementación de las 5ªs

Fuente: Elaborado por los autores
Anexo 19 Implementación de las 5´s

Fuente: Elaborado por los autores

Anexo 20 Implementación de las 5´s

Fuente: Elaborado por los autores
Anexo 21 Productividad del área de montaje

Fuente: Elaborado por los autores
Tiempo De Ciclo

<table>
<thead>
<tr>
<th>Mes</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td>1.28</td>
<td>3.70</td>
<td>3.21</td>
<td>3.50</td>
<td>3.00</td>
</tr>
<tr>
<td>Feb</td>
<td>1.09</td>
<td>2.12</td>
<td>2.15</td>
<td>2.00</td>
<td>1.95</td>
</tr>
<tr>
<td>Mar</td>
<td>1.21</td>
<td>1.92</td>
<td>2.33</td>
<td>2.29</td>
<td>2.11</td>
</tr>
<tr>
<td>Abr</td>
<td>1.02</td>
<td>1.97</td>
<td>2.33</td>
<td>2.15</td>
<td>2.00</td>
</tr>
<tr>
<td>May</td>
<td>0.93</td>
<td>1.69</td>
<td>2.36</td>
<td>2.10</td>
<td>1.90</td>
</tr>
<tr>
<td>Jun</td>
<td>0.82</td>
<td>1.26</td>
<td>3.87</td>
<td>3.40</td>
<td>3.23</td>
</tr>
<tr>
<td>Jul</td>
<td>0.58</td>
<td>1.15</td>
<td>3.50</td>
<td>4.50</td>
<td>4.14</td>
</tr>
<tr>
<td>Ago</td>
<td>1.69</td>
<td>1.76</td>
<td>3.63</td>
<td>2.48</td>
<td>2.35</td>
</tr>
<tr>
<td>Sep</td>
<td>1.51</td>
<td>2.13</td>
<td>3.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>1.37</td>
<td>2.36</td>
<td>2.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>2.02</td>
<td>2.30</td>
<td>3.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dic</td>
<td>2.68</td>
<td>1.93</td>
<td>2.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 22 Tiempo de ciclo del área de montaje

Fuente: Elaborado por los autores
Anexo 23 Costos de productos no conformes en el área de montaje

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th>Mes</th>
<th>2018</th>
<th>2019</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>320</td>
<td>32</td>
<td>352</td>
</tr>
<tr>
<td>Febrero</td>
<td>350</td>
<td>54</td>
<td>404</td>
</tr>
<tr>
<td>Marzo</td>
<td>424</td>
<td>96</td>
<td>520</td>
</tr>
<tr>
<td>Abril</td>
<td>448</td>
<td>126</td>
<td>574</td>
</tr>
<tr>
<td>Mayo</td>
<td>675</td>
<td>56</td>
<td>731</td>
</tr>
<tr>
<td>Junio</td>
<td>986</td>
<td>223</td>
<td>1,209</td>
</tr>
<tr>
<td>Julio</td>
<td>623</td>
<td>296</td>
<td>919</td>
</tr>
<tr>
<td>Agosto</td>
<td>852</td>
<td>342</td>
<td>1,194</td>
</tr>
<tr>
<td>Setiembre</td>
<td>531</td>
<td>212</td>
<td>743</td>
</tr>
<tr>
<td>Octubre</td>
<td>388</td>
<td>388</td>
<td>776</td>
</tr>
<tr>
<td>Noviembre</td>
<td>358</td>
<td>358</td>
<td>716</td>
</tr>
<tr>
<td>Diciembre</td>
<td>531</td>
<td>531</td>
<td>1,062</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6,486</td>
<td>1,437</td>
<td>7,923</td>
</tr>
</tbody>
</table>

Anexo 24 Cantidad de productos no conformes en el área de montaje

Fuente: Elaborado por los autores
Anexo 25 Gráficos estadísticos de los indicadores de producción vs no conformes en el área de montaje

Fuente: Elaborado por los autores
Anexo 26 Productividad del área de acabado

Fuente: Elaborado por los autores
Anexo 27 Tiempo de ciclo del área de acabado

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th></th>
<th>PNC - ACABADO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Enero</td>
<td>S/334</td>
<td>S/235</td>
</tr>
<tr>
<td>Febrero</td>
<td>S/432</td>
<td>S/357</td>
</tr>
<tr>
<td>Marzo</td>
<td>S/365</td>
<td>S/311</td>
</tr>
<tr>
<td>Abril</td>
<td>S/185</td>
<td>S/126</td>
</tr>
<tr>
<td>Mayo</td>
<td>S/368</td>
<td>S/234</td>
</tr>
<tr>
<td>Junio</td>
<td>S/451</td>
<td>S/211</td>
</tr>
<tr>
<td>Julio</td>
<td>S/243</td>
<td>S/136</td>
</tr>
<tr>
<td>Agosto</td>
<td>S/265</td>
<td>S/176</td>
</tr>
<tr>
<td>Setiembre</td>
<td>S/323</td>
<td>S/150</td>
</tr>
<tr>
<td>Octubre</td>
<td>S/374</td>
<td></td>
</tr>
<tr>
<td>Noviembre</td>
<td>S/354</td>
<td></td>
</tr>
<tr>
<td>Diciembre</td>
<td>S/254</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>S/3,948</td>
<td>S/1,936</td>
</tr>
</tbody>
</table>

Anexo 28 Costos de los productos no conformes en el área de acabado

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th>Area Resp</th>
<th>Acabado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accion</td>
<td>PNC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suma de Cantidad</th>
<th>Rótulos de columna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mes</td>
<td>2018</td>
</tr>
<tr>
<td>Enero</td>
<td>214</td>
</tr>
<tr>
<td>Febrero</td>
<td>351</td>
</tr>
<tr>
<td>Marzo</td>
<td>257</td>
</tr>
<tr>
<td>Abril</td>
<td>165</td>
</tr>
<tr>
<td>Mayo</td>
<td>225</td>
</tr>
<tr>
<td>Junio</td>
<td>390</td>
</tr>
<tr>
<td>Julio</td>
<td>24</td>
</tr>
<tr>
<td>Agosto</td>
<td>426</td>
</tr>
<tr>
<td>Setiembre</td>
<td>98</td>
</tr>
<tr>
<td>Octubre</td>
<td>107</td>
</tr>
<tr>
<td>Noviembre</td>
<td>53</td>
</tr>
<tr>
<td>Diciembre</td>
<td>76</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,386</td>
</tr>
</tbody>
</table>

Anexo 32 Cantidad de productos no conformes en el área de acabado

Fuente: Elaborado por los autores
Anexo 33 Gráficos estadísticos de las variables dependientes en el área de acabado

Fuente: Elaborado por los autores
EQUIPOS DE PROTECCIÓN PERSONAL

<table>
<thead>
<tr>
<th>EPP´S (Equpos de Protección Personal)</th>
<th>Audítiva</th>
<th>Cabeza</th>
<th>Pies</th>
<th>Manos</th>
<th>Ocular</th>
<th>Respiratoria</th>
<th>Corporal</th>
<th>Especial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requerimiento Obligatorio</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recomendación</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especificaciones</td>
<td>gafas o protector simple de inserción</td>
<td>manipulación y destrezas de herramientas, instrumento y metales.</td>
<td>Mascara simple o respirador de polvo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RIESGOS POTENCIALES

<table>
<thead>
<tr>
<th>Riesgos</th>
<th>Ruído</th>
<th>Ergonómico</th>
<th>Eléctrico</th>
<th>Aplastamiento</th>
<th>Atrapamiento</th>
<th>Corte</th>
<th>Proyecciones</th>
<th>Incendio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Bajo</td>
<td>-</td>
<td>Bajo</td>
<td>-</td>
<td>-</td>
<td>Bajo</td>
</tr>
<tr>
<td>Riesgos</td>
<td>Contacto Químico</td>
<td>Caída a mismo nivel</td>
<td>Caída a distinto nivel</td>
<td>Explosión</td>
<td>No ionizante</td>
<td>Contacto Térmico</td>
<td>Radiación Línea</td>
<td></td>
</tr>
<tr>
<td>Nivel</td>
<td>-</td>
<td>Bajo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Medio</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Niveles de Riesgos y Daños a la Salud

- **Bajo**: Leve
- **Medio**: Moderado
- **Alto**: Grave / Incapacitante

Anexo 34 Tabla de Epp´s y Nivel de riesgo

Fuente: Elaborado por los autores
INDICACIONES

1. Apagar la máquina
2. Limpiar la máquina externamente. Utilizar trapo
3. **Limpieza del sistema de coser, ¡Cuidado!, Riesgo de corte con la aguja**
4. Limpieza de la parte trasera del equipo
5. Limpieza y orden alrededor del equipo
6. Iniciar con su trabajo o apagar el equipo si ya finalizó su tarea

¡Cuidado! Toda operación con máquina apagada

Anexo 35 Instructivo del mantenimiento autónomo

Fuente: Elaborado por los autores
Anexo 36 Bono de supervisores en las áreas de montaje y acabado

BONO SUPERVISORES

<table>
<thead>
<tr>
<th>Peso</th>
<th>Detalle</th>
<th>% del bono</th>
<th>Detalle</th>
<th>% del bono</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>Cumplimiento de Producción</td>
<td>60%</td>
<td>Producto no Conforme</td>
<td>40%</td>
</tr>
<tr>
<td>40%</td>
<td>Producto no Conforme</td>
<td></td>
<td>Tiempo de Ciclo</td>
<td>25%</td>
</tr>
<tr>
<td>25%</td>
<td>Avance Proyecto</td>
<td></td>
<td>Tiempo de Ciclo</td>
<td>15%</td>
</tr>
</tbody>
</table>

EQUIVALENTE AL 70%

<table>
<thead>
<tr>
<th>PRODUCCIÓN</th>
<th>CALIDAD</th>
<th>SIN TRANSFERIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>META</td>
<td>REAL</td>
<td>%</td>
</tr>
<tr>
<td>METRO</td>
<td>REAL</td>
<td>%</td>
</tr>
<tr>
<td>CANT. NC</td>
<td>DETECTADAS</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MES 1</th>
<th>PRODUCCIÓN</th>
<th>CALIDAD</th>
<th>SIN TRANSFERIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM1</td>
<td>3100</td>
<td>100.00%</td>
<td>15</td>
</tr>
<tr>
<td>SEM2</td>
<td>5400</td>
<td>100.00%</td>
<td>100</td>
</tr>
<tr>
<td>SEM3</td>
<td>5400</td>
<td>100.00%</td>
<td>15</td>
</tr>
<tr>
<td>SEM4</td>
<td>5400</td>
<td>100.00%</td>
<td>100</td>
</tr>
<tr>
<td>SEM5</td>
<td>5400</td>
<td>100.00%</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24700</td>
<td>100.00%</td>
<td>11</td>
</tr>
</tbody>
</table>

PESO

<table>
<thead>
<tr>
<th>META</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20%</td>
</tr>
</tbody>
</table>

RESULTADO FINAL

85.53%

EQUIVALENTE AL 30%

<table>
<thead>
<tr>
<th>PROYECTO</th>
<th>INDUCCION Y ENTRENAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>META</td>
<td>AVANCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MES 1</th>
<th>PROYECTO</th>
<th>INDUCCION Y ENTRENAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>500</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

PESO

<table>
<thead>
<tr>
<th>META</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>25</td>
</tr>
</tbody>
</table>

RESULTADO FINAL

100.00%

EQUIVALENTE AL 70%

<table>
<thead>
<tr>
<th>PRODUCCIÓN</th>
<th>CALIDAD</th>
<th>SIN TRANSFERIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>META</td>
<td>REAL</td>
<td>%</td>
</tr>
<tr>
<td>METRO</td>
<td>REAL</td>
<td>%</td>
</tr>
<tr>
<td>CANT. NC</td>
<td>DETECTADAS</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MES 1</th>
<th>PRODUCCIÓN</th>
<th>CALIDAD</th>
<th>SIN TRANSFERIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM1</td>
<td>5400</td>
<td>100.00%</td>
<td>15</td>
</tr>
<tr>
<td>SEM2</td>
<td>5400</td>
<td>100.00%</td>
<td>100</td>
</tr>
<tr>
<td>SEM3</td>
<td>5400</td>
<td>100.00%</td>
<td>15</td>
</tr>
<tr>
<td>SEM4</td>
<td>5400</td>
<td>100.00%</td>
<td>100</td>
</tr>
<tr>
<td>SEM5</td>
<td>5400</td>
<td>100.00%</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27000</td>
<td>100.00%</td>
<td>11</td>
</tr>
</tbody>
</table>

PESO

<table>
<thead>
<tr>
<th>META</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>

RESULTADO FINAL

86.10%

EQUIVALENTE AL 30%

<table>
<thead>
<tr>
<th>PROYECTO</th>
<th>INDUCCION Y ENTRENAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>META</td>
<td>AVANCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MES 1</th>
<th>PROYECTO</th>
<th>INDUCCION Y ENTRENAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SEM5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>500</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

PESO

<table>
<thead>
<tr>
<th>META</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>25</td>
</tr>
</tbody>
</table>

RESULTADO FINAL

100.00%
Anexo 37 Matriz EPP

Fuente: Elaborado por los autores
Anexo 38 Ishikawa de la calidad del calzado

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th>Variable (X): LEAN MANUFACTURING</th>
<th>Dimensiones</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Análisis interno</td>
<td>I. Formulación</td>
<td></td>
</tr>
<tr>
<td>2. Objetivos</td>
<td>II. Ejecución</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 39 Variables, dimensiones e indicadores: Variable (1) Lean Manufacturing

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th>Variable (y):</th>
<th>Dimensiones</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Productividad</td>
<td>1. Producción/Hora-Hombre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Tiempo de Ciclo</td>
<td></td>
</tr>
<tr>
<td>II. Cantidad de Productos No Conforme</td>
<td>3. Calidad antes – calidad después / Total de pares producidos</td>
<td></td>
</tr>
<tr>
<td>III. Costos de Productos No Conforme</td>
<td>4. Soles/par</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 40 Variables, dimensiones e indicadores: Variable (1) Calidad del Producto

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th>familia</th>
<th>Promedio de Precio Unitario</th>
<th>Suma de Precio Unitario2</th>
<th>Stock Ideal</th>
<th>Ahorro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adorno, Aplicaciones, Serigrafías</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacionales</td>
<td>S/1.78</td>
<td>S/88.97</td>
<td>S/88.97</td>
<td></td>
</tr>
<tr>
<td>Bolsas</td>
<td>S/0.67</td>
<td>S/7.35</td>
<td>S/7.35</td>
<td>S/0.00</td>
</tr>
<tr>
<td>Cajas</td>
<td>S/1.86</td>
<td>S/24.21</td>
<td>S/24.21</td>
<td>S/0.00</td>
</tr>
<tr>
<td>Cremas</td>
<td>S/35.40</td>
<td>S/1,557.74</td>
<td>S/778.87</td>
<td>S/778.87</td>
</tr>
<tr>
<td>Elásticos y látex Importado</td>
<td>S/0.63</td>
<td>S/3.78</td>
<td>S/3.78</td>
<td></td>
</tr>
<tr>
<td>Hilos Importados</td>
<td>S/3.76</td>
<td>S/60.11</td>
<td>S/60.11</td>
<td>S/0.00</td>
</tr>
<tr>
<td>Hilos Nacional</td>
<td>S/23.86</td>
<td>S/238.55</td>
<td>S/59.64</td>
<td>S/178.91</td>
</tr>
<tr>
<td>Material de Embalaje</td>
<td>S/6.51</td>
<td>S/32.55</td>
<td>S/32.55</td>
<td></td>
</tr>
<tr>
<td>Material de Empaque</td>
<td>S/0.06</td>
<td>S/1.21</td>
<td>S/1.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S/0.76</td>
<td>S/8.34</td>
<td>S/8.34</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Pasador Nacionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasadores Importados</td>
<td>S/0.10</td>
<td>S/1.89</td>
<td>S/1.89</td>
<td></td>
</tr>
<tr>
<td>Plantas Importadas</td>
<td>S/1.38</td>
<td>S/13.83</td>
<td>S/13.83</td>
<td></td>
</tr>
<tr>
<td>Plantas Nacionales</td>
<td>S/4.80</td>
<td>S/110.40</td>
<td>S/110.40</td>
<td></td>
</tr>
<tr>
<td>Suelas / Neolites Nacional</td>
<td>S/24.87</td>
<td>S/74.60</td>
<td>S/74.60</td>
<td></td>
</tr>
<tr>
<td>Telas, Cintas y Forros Nacionales</td>
<td>S/13.19</td>
<td>S/303.29</td>
<td>S/303.29</td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>S/9.64</td>
<td>S/2,979.33</td>
<td>S/951.91</td>
<td>S/2,027.41</td>
</tr>
</tbody>
</table>

Anexo 41 Precios de materia prima

Fuente: Elaborado por los autores
<table>
<thead>
<tr>
<th>Nº</th>
<th>Descripción de Desviaciones</th>
<th>Lugar</th>
<th>Nivel de Riesgo</th>
<th>Acciones a tomar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La mayoría de envases están sin rotular o no son los adecuados</td>
<td>Área Montaje y Acabado</td>
<td>B</td>
<td>Los envases (tinte, bencina, terokal, etc) deben rotularse. Utilizar envases correctos, no botellas de gaseosa, ni otras bebidas.</td>
</tr>
</tbody>
</table>

Fecha de Empiezo: SABADO 29

Analista / Supervisor:

Estado de Camp.: OK

Observación:

NOTAS:

1. Clasificación: (A) Alta (B) Media (C) Baja
2. Est. Cumpl.: Efecto, En Proceso, Pendiente

Equipo de Inspección:

Mezafria Vidal, Juan
Guzman Vera, Katherine

Empresa: Juan Leng Delgado S.A.C.

Fecha: 06/01/2019
<table>
<thead>
<tr>
<th>N°</th>
<th>Cables sueltos fuera de las delimitaciones</th>
<th>Área Montaje y Acabado</th>
<th>B</th>
<th>Se deben colocar canaletas para los cables que se encuentren en el piso</th>
<th>Mantenimiento</th>
<th>OK</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Envases sin rotular</td>
<td>Área Montaje y Acabado</td>
<td>B</td>
<td>Rotular todos los envases donde se colocan los solventes (tinte, terokal, colas, etc)</td>
<td>Analista / Supervisor</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Caja y bolsa colgada en la máquina de Limpado lateral</td>
<td>Área Montaje y Acabado</td>
<td>B</td>
<td>Orden y Limpieza en el área, las máquinas deben estar despejadas, mantener cualquier líquido lejos de su mecanismo y punto de conexión eléctrico.</td>
<td>Supervisor</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 42 Inspección de Seguridad y Salud en el trabajo relacionado con las 5’s

Fuente: Elaborado por los autores
Anexo 43 Evaluación del desempeño y necesidades de capacitación

Fuente: Elaborado por los autores
| TITULO: IMPLEMENTACION DEL LEAN MANUFACTURING PARA REDUCIR LOS PRODUCTOS NO CONFORME EN LAS AREAS DE MONTAJE Y ACABADO EN EL RUBRO DE CALZADO. |
|---|---|---|---|---|
| PROBLEMAS | OBJETIVOS | HIPOTESIS | VARIABLE INDEPENDIENTE | VARIABLE DEPENDIENTE |
| GENERAL | ¿En qué medida la aplicación del Lean Manufacturing en una empresa de rubro de calzado, reduce la cantidad de productos no conforme? | Aplicar el “Lean Manufacturing”, en una empresa de rubro de calzado, para reducir la cantidad de productos no conforme. | La aplicación del Lean Manufacturing contribuye significativamente en la reducción de productos no conforme en una empresa de rubro de calzado. | -Producto No Conforme |
| ESPECÍFICOS | a) ¿En qué medida la aplicación del “Lean Manufacturing”, mejora la productividad en una empresa de rubro de calzado? | a) Aplicar el “Lean Manufacturing” para mejorar la productividad en una empresa de rubro de calzado. | alta aplicación del Lean Manufacturing contribuye significativamente en la mejora de la productividad en una empresa de rubro de calzado. | -Productividad |
| | b) ¿En qué medida la aplicación del “Lean Manufacturing”, mejora el tiempo de ciclo en una empresa de rubro de calzado? | b) Aplicar el “Lean Manufacturing” para mejorar el tiempo de ciclo en una empresa de rubro de calzado. | b) La aplicación del Lean Manufacturing contribuye significativamente en la mejora del tiempo de ciclo en una empresa de rubro de calzado. | -Tiempo de Ciclo |
| | c) ¿En qué medida la aplicación del “Lean Manufacturing”, reduce los costos de productos no conforme en una empresa de rubro de calzado? | c) Aplicar el “Lean Manufacturing” para reducir los costos de productos no conforme en una empresa de rubro de calzado. | c) La aplicación del Lean Manufacturing contribuye significativamente en la reducción de los costos de producto no conforme en una empresa de rubro de calzado. | -Costos de productos no conforme |

Anexo 44 Matriz de consistencia

Fuente: Elaborado por los autores