UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

ANÁLISIS DE LAS PROPIEDADES FÍSICO MECÁNICAS DE CEMENTOS PÓRTLAND TIPO I EN LIMA METROPOLITANA

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADA POR

Bach. HUARCAYA GONZALES, ARTURO ANTONIO

Asesor: Mg. Ing. CHAVARRÍA REYES, LILIANA JANET

LIMA-PERÚ 2019

DEDICATORIA

Dedico esta tesis a mis padres y hermanas quienes me brindaron todo el apoyo a lo largo de mis estudios, a mis hijos quienes han sido el soporte perfecto para nunca decaer y siempre mantenerme firme en cada etapa del proceso del desarrollo de mi carrera y de esta tesis.

AGRADECIMIENTOS

Mi sincero agradecimiento a mi asesora de tesis, Mg.Ing. Liliana Chavarría Reyes, a la Ing. Enriqueta Pereyra Salardi y al Ing. Alberto Vilchez Montoya, por el constante apoyo brindado a los largo del desarrollo de este proyecto de investigación

ÍNDICE GENERAL

RESUMEN	xiv
ABSTRACT	xv
INTRODUCCIÓN	1
CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA	3
1.1 Descripción de la realidad problemática	3
1.2 Formulación del Problema	4
1.2.1 Problema principal	4
1.2.2 Problemas Específicos	4
1.3 Objetivos de la investigación	4
1.3.1 Objetivo General	4
1.3.2 Objetivos Específicos	4
1.4 Justificación de la investigación	5
1.5 Limitaciones de la investigación	5
1.6 Viabilidad de la investigación	5
CAPÍTULO II: MARCO TEÓRICO	6
2.1 Antecedentes de la investigación	6
2.2 Bases teóricas	7
2.2.1 Definiciones conceptuales	7
2.2.2 Formulación de hipótesis	10
2.2.2.1 Hipótesis general	10
2.2.2.2 Hipótesis específicas	10
CAPÍTULO III: METODOLOGÍA	11
3.1 Tipología	11
3.1.1 Tipo y nivel de Investigación	11
3.1.2 Diseño de la Investigación	11
3.2 Variables	11
3.2.1 Operacionalización de variables	12
3.3 Población y muestra	12
3.4 Técnicas de Investigación	13
3.4.1 Regresión lineal	13
3.4.2 Asimetría	14
3.5 Técnicas de Recolección de datos	16

3.5.1 Técnica de muestreo	16
3.5.2 Realización de ensayos	16
3.5.3 Validez y confiabilidad de los instrumentos	16
3.6 Aspectos éticos	19
CAPÍTULO IV: PRESENTACION DE RESULTADOS	20
4.1 Análisis de los resultados de la investigación	20
4.1.1 Determinación del tiempo de fraguado del cemento hidráulico la aguja de Vicat	
4.1.2 Ensayo de la resistencia a la compresión	65
4.2 Contrastación de hipótesis	111
4.2.1 Contrastación de la primera hipótesis	111
4.2.2 Contrastación de la segunda hipótesis	127
CAPÍTULO V: DISCUSIÓN	136
CONCLUSIONES	137
RECOMENDACIÓNES	1368
REFERENCIAS BIBLIOGRÁFICAS	139
ANEXO	140

ÍNDICE DE FIGURAS

Figura N° 1: Diferentes Marcas de Cementos Tipo I	8
Figura N° 2: Aguja de Vicat.	9
Figura N° 3: Recta de regresión Lineal.	14
Figura N° 4: Estados de asimetría.	15
Figura N° 5: Máquina de compresión axial Electro – hidráulica	17
Figura N° 6: Aparato de Vicat.	17
Figura N° 7: Balanza	18
Figura N° 8: Batidora	18
Figura N° 9: Repetición 1 del ensayo de tiempo de fraguado del cemento Sol	22
Figura N° 10: Repetición 2 del ensayo de tiempo de fraguado del cemento Sol	23
Figura N° 11: Repetición 3 del ensayo de tiempo de fraguado del cemento Sol2	24
Figura N° 12: Repetición 4 del ensayo de tiempo de fraguado del cemento Sol	25
Figura N° 13: Repetición 5 del ensayo de tiempo de fraguado del cemento Sol	26
Figura N° 14: Repetición 6 del ensayo de tiempo de fraguado del cemento Sol	27
Figura N° 15: Repetición 7 del ensayo de tiempo de fraguado del cemento Sol	28
Figura N° 16: Repetición 8 del ensayo de tiempo de fraguado del cemento Sol	29
Figura N° 17: Repetición 9 del ensayo de tiempo de fraguado del cemento Sol	30
Figura N° 18: Repetición 10 del ensayo de tiempo de fraguado del cemento Sol3	31
Figura N° 19: Repetición 1 del ensayo de tiempo de fraguado del cemento	
Quisqueya3	33
Figura N° 20: Repetición 2 del ensayo de tiempo de fraguado del cemento	
Quisqueya3	34
Figura N° 21: Repetición 3 del ensayo de tiempo de fraguado del cemento	
Quisqueya3	35
Figura N° 22: Repetición 4 del ensayo de tiempo de fraguado del cemento	
Quisqueya3	36
Figura N° 23: Repetición 5 del ensayo de tiempo de fraguado del cemento	
Quisqueya3	37
Figura N° 24: Repetición 6 del ensayo de tiempo de fraguado del cemento	
Quisqueya3	38

Figura N° 25: Repetición 7 del ensayo de tiempo de fraguado del cemento
Quisqueya39
Figura N° 26: Repetición 8 del ensayo de tiempo de fraguado del cemento
Quisqueya40
Figura N° 27: Repetición 9 del ensayo de tiempo de fraguado del cemento
Quisqueya41
Figura N° 28: Repetición 10 del ensayo de tiempo de fraguado del cemento
Quisqueya42
Figura N° 29: Repetición 1 del ensayo de tiempo de fraguado del cemento
Pacasmayo44
Figura N° 30: Repetición 2 del ensayo de tiempo de fraguado del cemento
Pacasmayo45
Figura N° 31: Repetición 3 del ensayo de tiempo de fraguado del cemento
Pacasmayo46
Figura N° 32: Repetición 4 del ensayo de tiempo de fraguado del cemento
Pacasmayo47
Figura N° 33: Repetición 5 del ensayo de tiempo de fraguado del cemento
Pacasmayo48
Figura N° 34: Repetición 6 del ensayo de tiempo de fraguado del cemento
Pacasmayo49
Figura N° 35: Repetición 7 del ensayo de tiempo de fraguado del cemento
Pacasmayo50
Figura N° 36: Repetición 8 del ensayo de tiempo de fraguado del cemento
Pacasmayo51
Figura N° 37: Repetición 9 del ensayo de tiempo de fraguado del cemento
Pacasmayo52
Figura N° 38: Repetición 10 del ensayo de tiempo de fraguado del cemento
Pacasmayo53
Figura N° 39: Repetición 1 del ensayo de tiempo de fraguado del cemento Andino55
Figura N° 40: Repetición 2 del ensayo de tiempo de fraguado del cemento Andino56
Figura N° 41: Repetición 3 del ensayo de tiempo de fraguado del cemento Andino57
Figura N° 42: Repetición 4 del ensayo de tiempo de fraguado del cemento Andino58
Figura N° 43: Repetición 5 del ensayo de tiempo de fraguado del cemento Andino59
Figura N° 44: Repetición 6 del ensayo de tiempo de fraguado del cemento Andino60

Figura N° 45: Repetición 7 del ensayo de tiempo de fraguado del cemento Andino61
Figura N° 46: Repetición 8 del ensayo de tiempo de fraguado del cemento Andino62
Figura N° 47: Repetición 9 del ensayo de tiempo de fraguado del cemento Andino63
Figura N° 48: Repetición 10 del ensayo de tiempo de fraguado del cemento Andino64
Figura N° 49: Ensayo de Resistencia a la Compresión de cubos de mortero65
Figura N° 50: Repetición 1 del ensayo de resistencia a la compresión del cemento
Sol67
Figura N° 51: Repetición 2 del ensayo de resistencia a la compresión del cemento
Sol68
Figura N° 52: Repetición 3 del ensayo de resistencia a la compresión del cemento
Sol69
Figura N° 53: Repetición 4 del ensayo de resistencia a la compresión del cemento
Sol70
Figura N° 54: Repetición 5 del ensayo de resistencia a la compresión del cemento
Sol71
Figura N° 55: Repetición 6 del ensayo de resistencia a la compresión del
cemento Sol
Figura N° 56: Repetición 7 del ensayo de resistencia a la compresión del cemento
Sol73
Figura N° 57: Repetición 8 del ensayo de resistencia a la compresión del cemento
Sol74
Figura N° 58: Repetición 9 del ensayo de resistencia a la compresión del cemento
Sol75
Figura N° 59: Repetición 10 del ensayo de resistencia a la compresión del cemento
Sol76
Figura N° 60: Repetición 1 del ensayo de resistencia a la compresión del cemento
Quisqueya78
Figura N° 61: Repetición 2 del ensayo de resistencia a la compresión del cemento
Quisqueya79
Figura N° 62: Repetición 3 del ensayo de resistencia a la compresión del cemento
Quisqueya80
Figura N° 63: Repetición 4 del ensayo de resistencia a la compresión del cemento
Quisqueya81

Figura N° 64: Repetición 5 del ensayo de resistencia a la compresión del cemento	
Quisqueya8	2
Figura N° 65: Repetición 6 del ensayo de resistencia a la compresión del cemento	
Quisqueya8	3
Figura N° 66: Repetición 7 del ensayo de resistencia a la compresión del cemento	
Quisqueya8	4
Figura N° 67: Repetición 8 del ensayo de resistencia a la compresión del cemento	
Quisqueya8	5
Figura N° 68: Repetición 9 del ensayo de resistencia a la compresión del cemento	
Quisqueya8	6
Figura N° 69: Repetición 10 del ensayo de resistencia a la compresión del cemento	
Quisqueya8	7
Figura N° 70: Repetición 1 del ensayo de resistencia a la compresión del cemento	
Pacasmayo8	9
Figura N° 71: Repetición 2 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	0
Figura N° 72: Repetición 3 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	1
Figura N° 73: Repetición 4 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	2
Figura N° 74: Repetición 5 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	13
Figura N° 75: Repetición 6 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	4
Figura N° 76: Repetición 7 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	5
Figura N° 77: Repetición 8 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	6
Figura N° 78: Repetición 9 del ensayo de resistencia a la compresión del cemento	_
Pacasmayo9)7
Figura N° 79: Repetición 10 del ensayo de resistencia a la compresión del cemento	
Pacasmayo9	8'
Figura N° 80: Repetición 1 del ensayo de resistencia a la compresión del cemento	
Andino	IO

Figura N° 81: Repetición 2 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 82: Repetición 3 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 83: Repetición 4 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 84: Repetición 5 del ensayo de resistencia a la compresión del cemento
Andino104
Figura N° 85: Repetición 6 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 86: Repetición 7 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 87: Repetición 8 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 88: Repetición 9 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 89: Repetición 10 del ensayo de resistencia a la compresión del cemento
Andino
Figura N° 90: Resultado promedio del ensayo de resistencia a la compresión de los
cuatro cementos
Figura N° 91: Histograma de frecuencia tiempo inicial de fraguado del cemento sol112
Figura N° 92: Histograma de frecuencia tiempo final de fraguado del cemento sol113
Figura N° 93: Histograma de frecuencia tiempo inicial de fraguado del cemento
Pacasmayo114
Figura N° 94: Histograma de frecuencia tiempo final de fraguado del cemento
Pacasmayo114
Figura N° 95: Histograma de frecuencia tiempo inicial de fraguado del cemento
Quisqueya115
Figura N° 96: Histograma de frecuencia tiempo final de fraguado del cemento
Quisqueya116
Figura N° 97: Histograma de frecuencia tiempo inicial de fraguado del cemento
Andino
Figura N° 98: Histograma de frecuencia tiempo final de fraguado del cemento
Andino117

Figura N° 99: Regresión Lineal cemento sol	121
Figura N° 100: Regresión Lineal cemento Pacasmayo	122
Figura N° 101: Regresión Lineal cemento Quisqueya	123
Figura N° 102: Regresión Lineal cemento Andino	124
Figura N° 103: Histograma de frecuencia Resistencia del cemento Sol	129
Figura N° 104: Histograma de frecuencia Resistencia del cemento Quisqueya	130
Figura N° 105: Histograma de frecuencia Resistencia del cemento Pacasmayo	.131
Figura N° 106: Histograma de frecuencia Resistencia del cemento Andino	132
Figura N°107: Modelo de regresión lineal cementos Tipo I	134

ÍNDICE DE TABLAS

Tabla N° 1: Operacionalización de Variables	2
Tabla N° 2: Total de cementos pórtland Tipo I1	3
Tabla N° 3: Cantidad de cubos a ensayar por edad para cada cemento pórtland Tipo	
I1	3
Tabla N° 4: Resumen General de tiempo de fraguado del cemento Sol2	1
Tabla N° 5: Resumen General de tiempo de fraguado del cemento Quisqueya3	2
Tabla N° 6: Resumen General de tiempo de fraguado del cemento Pacasmayo4	3
Tabla N° 7: Resumen General de tiempo de fraguado del cemento Andino5	4
Tabla N° 8: Resumen General de resistencia a la compresión del cemento Sol60	6
Tabla N° 9: Resumen General de resistencia a la compresión del cemento Quisqueya.7°	7
Tabla N° 10: Resumen General de resistencia a la compresión del cemento	
Pacasmayo8	8
Tabla N° 11: Resumen General de resistencia a la compresión del cemento Andino9	9
Tabla N° 12: Resultados de los tiempos iniciales y finales de fraguados11	1
Tabla N° 13: Resultados estadísticos de tiempo inicial y final de fraguado del	
cemento Sol11	2
Tabla N° 14: Resultados estadísticos de tiempo inicial y final de fraguado del	
cemento Pacasmayo113	3
Tabla N° 15: Resultados estadísticos de tiempo inicial y final de fraguado del	
cemento Quisqueya11:	5
Tabla N° 16: Resultados estadísticos de tiempo inicial y final de fraguado del	
cemento Andino	6
Tabla N° 17: Coeficientes de la recta de regresión para el cemento Sol11	8
Tabla N° 18: Coeficientes de la recta de regresión para el cemento Pacasmayo11	8
Tabla N° 19: Coeficientes de la recta de regresión para el cemento Quisqueya11	9
Tabla N° 20: Coeficientes de la recta de regresión para el cemento Andino11	9
Tabla N° 21: Resumen del modelo -cemento Sol	:5
Tabla N° 22: Resumen del model-cemento Pacasmayo12	5
Tabla N° 23: Resumen del modelo- cemento Quisqueya12	5
Tabla N° 24: Resumen del modelo-cemento Andino12	5

Tabla N° 26: Resumen de muestras de res	sistencia a los 28 días y porcentaje de
finura	
Tabla N° 27: Resultados Estadísticos para	a cemento Sol128
Tabla N° 28: Resultados Estadísticos para	a cemento Quisqueya129
Tabla N° 29: Resultados Estadísticos para	a cemento Pacasmayo130
Tabla N° 29: Resultados Estadísticos para	a cemento Andino131
Tabla N° 30: Coeficientes de la recta de r	egresión para los diferentes cementos
Tipo I	132
Tabla N° 31: Resumen del modelo	135

RESUMEN

La tesis "Análisis de las propiedades físico mecánicas de Cementos Pórtland Tipo I en

Lima Metropolitana" tiene una metodología de investigación de tipo descriptivo y

enfoque cuantitativo, es de un nivel de investigación descriptivo; además, tiene un

diseño de investigación de tipo experimental, longitudinal y prospectivo. En la

actualidad, la ciudad de Lima presenta gran cantidad de construcciones a diario, entre

formales e informales, siendo las más recurrentes las construcciones informales en

zonas de escasos recursos económicos, por ende, tener calidad de materiales de

construcción es el objetivo de la ciudadanía sobre todo si éstos son a bajo costo. Por lo

que en esta tesis se pretende dar a conocer las propiedades físico mecánicas del

cemento, los cementos más utilizados en las construcciones son los Pórtland de Tipo I,

éstos fueron evaluados mediantes muestras de morteros y sometidos a diferentes

ensayos para de ésta manera conocer sus propiedades físico mecánicas.

Para la presente investigación se eligió cuatro diferentes marcas de cementos Pórtland

Tipo I utilizados con más frecuencia en las construcciones de Lima Metropolitana, éstos

fueron: cemento Sol, cemento Quisqueya, cemento Pacasmayo y cemento Andino. Se

realizó el ensayo de Determinación de Tiempo de Fraguado; se ensayaron 10 muestras a

compresión para 3, 7, 14 y 28 días, por cada tipo de cemento, es decir se obtuvieron 160

muestras en total para el ensayo de resistencia a la compresión y un último ensayo para

hallar el porcentaje de finura. Se concluye que al variar los diferentes cementos Pórtland

Tipo I se reducen sus tiempos de fraguado por ende reduce su trabajabilidad, además el

incremento del porcentaje de finura en cada cemento Tipo I conlleva a que aumente la

resistencia a la compresión. Finalmente, como conclusión final se obtuvo que el

cemento mejor recomendado por sus propiedades físico mecánicas es el Cemento Sol y

el menor recomendado es el Andino.

Palabras claves: Resistencia, finura, tiempo de fraguado

xiv

ABSTRACT

The thesis "Analysis of the mechanical physical properties of Portland Cement Type I in

Metropolitan Lima" has a descriptive research methodology and quantitative approach,

it is of a descriptive level of investigation; In addition, it has a research design of

experimental, longitudinal and prospective type. Currently, the city of Lima has a large

number of constructions on a daily basis, between formal and informal, the most

recurrent being informal constructions in areas of scarce economic resources, therefore

having the quality of construction materials is the objective of citizenship over all if

these are at low cost. So in this thesis is intended to publicize the physical mechanical

properties of cement, the cements most commonly used in buildings are the Type I

portland, these were evaluated by means of mortar samples and subjected to different

tests in order to know their mechanical physical properties.

For the present investigation, four different brands of portland Type I cements used

most frequently in the buildings of Metropolitan Lima were chosen: sun cement,

Quisqueya cement, Pacasmayo cement and Andean cement. The setting time

determination test was carried out; 10 compression samples were tested for 3, 7, 14 and

28 days, and by cement, that is, 160 samples were obtained in total for the compression

resistance test and a final test to find the percentage of fineness. It is concluded that

when varying the different portland Type I cements, their setting times are reduced,

therefore their workability is reduced, and the increase in the percentage of fineness in

each Type I cement leads to an increase in compressive strength. Finally, as a final

conclusion, it was found that the cement best recommended for its physical and

mechanical properties is Cemento Sol and the least recommended is the Andean.

Keywords: Resistance, fineness, setting time

ΧV

INTRODUCCIÓN

En la actualidad el desarrollo del país depende de las actividades que sean realizadas en base al beneficio de las personas en una sociedad, una de esas actividades es la infraestructura y es como se vuelve necesario el construir para poder generar desarrollo.

El sector construcción impulsa de una manera sostenida el crecimiento del país, siendo el cemento el material más importante para la elaboración del concreto por ende el conocer sus propiedades y como actúa ante la elaboración de un mortero es de vital importancia para la selección de un buen cemento. La presente investigación nos da a conocer las propiedades físico mecánicas de 4 diferentes cementos Pórtland Tipo I en la ciudad de Lima Metropolitana.

En esta investigación analizaremos las propiedades de cuatro diferentes marcas de cemento (Sol, Quisqueya, Pacasmayo y Andino) en la mejora del mortero y acompañado de una metodología aplicada en la ciudad de Lima Metropolitana, que conocer qué cemento posee mejores propiedades en tiempo de fraguado y resistencia a la compresión de ésta manera aumentar la productividad y asegurar el desempeño del cemento Pórtland Tipo I.

En el capítulo 1 se realizó la descripción de la investigación, presentando la descripción de la problemática y justificación de la investigación, la formulación del problema, la limitación y viabilidad de la investigación. Ahí se explicó la problemática por la cual nació la idea de la tesis. También se desarrollaron los objetivos de la investigación, como objetivo principal se planteó Analizar que los tipos de cementos Pórtland Tipo I influyen en las propiedades físico-mecánicas del cemento en Lima Metropolitana. Los objetivos secundarios fueron establecer que los tiempos optimizan la fragua inicial y final del cemento Pórtland Tipo I en Lima Metropolitana y determinar que la finura del cemento Pórtland Tipo I optimiza la resistencia a la compresión del mortero en Lima Metropolitana.

En el capítulo 2 se desarrolló el marco teórico, en el cual se hizo la recopilación bibliográfica en la que se basa la investigación. Se presentaron los antecedentes de la

investigación y las bases teóricas que sirvieron para realizar las definiciones conceptuales y la formulación de la hipótesis.

En el capítulo 3 se realizó el diseño metodológico, en donde se definió el diseño de la investigación, la población y muestra, las técnicas de recolección de datos, las técnicas para el procesamiento del análisis de datos y el cuadro de operacionalización de variables En el capítulo 4 se realizó la presentación de resultados, este capítulo está dividido en dos partes las cuales se detallan a continuación:

Interpretación de los resultados de la investigación, se desarrollaron los ensayos del mortero tanto en estado fresco como en estado endurecido y se elaboraron gráficos y tablas con los resultados obtenidos.

Contrastación de hipótesis, se realizó la validación estadística de las hipótesis planteadas en la tesis.

En el capítulo 5 se presenta la discusión, las conclusiones, recomendaciones para futuras investigaciones y bibliografía

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1 Descripción de la realidad problemática

Las empresas que lideran el mercado peruano la industria del cemento son cuatro; cemento Pacasmayo tuvo sus inicios en la década de los 50, pero comenzó a operar con mayor fuerza en el mercado nacional en la década de los 90, a través de la Distribuidora del Norte Pacasmayo (DINO).

Quisqueya es la marca de cemento distribuido por Cemex empresa con más de 100 años en el mercado mundial y con presencia en más de 50 países

Cemento Sol es el producto bandera de La Unión Andina de Cementos (UNACEM), el cual ha sido utilizado en obras de gran envergadura en la historia del Perú.

En la actualidad, cemento Andino es uno de los más usados en el país.

El cemento pórtland Tipo I es el más utilizado en las obras de construcción en concreto a nivel nacional por su facilidad de compra en el mercado. El cemento que se utiliza en la construcción, debe tener ciertas propiedades que deben cumplir con los requisitos mínimos especificados en las normas, para que el desempeño del cemento sea satisfactorio.

En la presente Investigación se analizará las propiedades físico mecánicas de las cuatro marcas de cemento, mediante ensayos de laboratorio se determinará el tiempo de fraguado, la consistencia normal y resistencia a la compresión, para luego comparar los resultados con las especificaciones de la Norma Técnica Peruana (NTP).

1.2 Formulación del Problema

1.2.1 Problema principal

¿En qué medida los tipos de cementos pórtland Tipo I influyen en las propiedades físico-mecánicas del cemento en Lima Metropolitana?

1.2.2 Problemas Específicos

- 1. ¿En qué medida el tiempo de fraguado influye en la fragua inicial y final del cemento pórtland Tipo I en Lima Metropolitana?
- 2. ¿En qué medida la finura del cemento pórtland Tipo I influye en la resistencia del mortero a la compresión en Lima Metropolitana?

1.3 Objetivos de la investigación

1.3.1 Objetivo General

Analizar que los tipos de cementos pórtland Tipo I influyen en las propiedades físico-mecánicas del cemento en Lima Metropolitana

1.3.2 Objetivos Específicos

- 1. Establecer que los tiempos de fraguado optimizan la fragua inicial y final del cemento pórtland Tipo I en Lima Metropolitana
- 2. Determinar que la finura del cemento pórtland Tipo I optimiza la resistencia a la compresión del mortero en Lima Metropolitana

1.4 Justificación de la investigación

El presente trabajo se realizó con el fin de conocer las propiedades físico mecánicas de los cementos que se comercializan en Lima Metropolitana, de ésta manera se brindará viviendas más seguras, con mayor resistencia ante los diferentes factores perjudiciales, aumentará la demanda de construcción de viviendas con el mejor cemento hallado, aumentará la seguridad de construcción a largo plazo, además beneficios respecto al proceso constructivo convencional.

1.5 Limitaciones de la investigación

La investigación se realizó tan solo con 4 marcas de diferentes de cementos pórtland de Tipo I para Lima Metropolitana, sin tomar en cuenta las demás marcas existentes que podrían proporcionar resultados parecidos o diferentes.

1.6 Viabilidad de la investigación

Los ensayos experimentales serán realizados en el Laboratorio de Ensayo de Materiales, de la Facultad de Ingeniería, de la Escuela Profesional de Ingeniería Civil de la Universidad Ricardo Palma, donde se permitirá tener acceso a los equipos necesarios correspondientes al tema, así como también el respaldo técnico de los especialistas.

CAPÍTULO II: MARCO TEÓRICO

2.1 Antecedentes de la investigación

Según Mejía de Gutiérrez (2001) publica un artículo titulado "Propiedades y comportamiento de cementos nacionales", en el cual describe el comportamiento físicomecánico de varios tipos de cementos colombianos, dándole gran importancia a los parámetros de durabilidad como la absorción capilar, difusión de cloruros y el comportamiento frente a sulfatos. Se evaluaron 19 muestras de cementos, las cuales se codificó de C1 a C19, las pruebas de resistencia determinaron que tan solo la muestra con el código C4 presento valores que no se encuentran dentro de las especificaciones de la NTC-121, en cuanto a los valores de finura Blaine se obtuvieron en todos los cementos estudiados valores mayores a 280 m2 /Kg, el cual es el valor mínimo especificado en las normas NTC 121

Según Ortiz (2010) en su investigación "Comparación del desempeño de diferentes marcas comerciales de cemento pórtland CPC-30R, empleadas para elaborar concreto de resistencia media", esta investigación se centró en el efecto que puede tener cinco marcas de cemento Mexicano (Apasco, Cruz azul, Lafarge, Moctezuma y Tolteca) en las propiedades mecánicas de las mezclas de concreto.

Para la evaluación de las propiedades mecánicas se realizaron pruebas de compresión en cilindros de 10 cm de diámetro y 20 cm de altura y pruebas de flexión en vigas. De los ensayos realizados los valores de resistencia a la compresión y flexión, presentó gran variación en la textura y manejabilidad entre las marcas de cemento pese a que todas las marcas deben cumplir con los parámetros establecidos en las normas Mexicanas.

Según Murga (2016) al realizar el diagrama Periodo Resistencia con la finalidad de hacer las comparaciones con las diferentes marcas de cemento, es posible verificar y comparar el desempeño del concreto elaborado con diferentes marcas comerciales de

cemento a partir de su gráfico experimental obtenido en su tesis "Desempeño del Concreto Elaborado en la Provincia de Huánuco con las Diferentes Marcas Comerciales del cemento pórtland Tipo I".

2.2 Bases teóricas

2.2.1 Definiciones conceptuales

Cemento Pórtland

El nombre de cemento pórtland (ver figura N° 1), concebido originalmente debido a la semejanza de color y calidad entre el cemento endurecido y la piedra de pórtland una caliza obtenida en una cantera de Dorset, se ha conservado en todo de mundo hasta nuestros días para describir un cemento que se obtiene al mezclar minuciosamente materiales calcáreos y arcillosos u otros materiales que contienen sílice, alúmina, u óxidos de fierro, quemándolos a una temperatura de formación de clinker y por medio de la molienda el clinker resultante. La definición de cemento pórtland de varias normas está en estas líneas, que reconocen que el yeso se agrega después de quemar; en la actualidad, también se pueden agregar o mezclar otros materiales (M. Neville, 1999).

En el Perú, los cementos Pórtland se encuentran sujetos a normas dadas por INACAL, que guardan armonía con las establecidas con la American Society for Testing and Materials ASTM (Rivera, 2011).

Figura N° 1: Diferentes Marcas de Cementos Tipo I. Fuente: Elaboración Propia

Agregado fino

Se considera como agregados finos a la arena o piedra natural finamente triturada, de dimensiones reducidas y que pasan un tamiz 9.5 mm (3/8") y que cumplen con los límites establecidos en la norma NTP 400.012. (Tolentino, 2016).

Finura del Cemento

El proceso de molienda de Clinker y yeso determina la finura del cemento que es el tamaño de las partículas de cemento, es una de las propiedades físicas más importantes del cemento, ya que está ligada con la velocidad de hidratación, desarrollo de calor, retracción y aumento de la resistencia.

Agujas de Vicat

El ensayo Vicat es el método utilizado para determinar el contenido de agua el cual produce la consistencia deseada. El aparato consiste en un vástago móvil de uso dual (ver figura N° 2).

Figura N° 2: Aguja de Vicat Fuente: Elaboración Propia

Propiedades del mortero fresco

Trabajabilidad

Engloba varias propiedades como la consistencia y la cohesión, su evaluación es relativa, depende de las facilidades manuales o mecánicas de que se disponga, ya que un mortero puede ser trabajable bajo ciertas condiciones de colocación y compactación.

Consistencia Normal del Cemento

Este método de ensayo cubre la determinación de la consistencia normal del cemento hidráulico, es utilizado para determinar la cantidad de agua requerida para preparar pastas de cemento hidráulico destinadas a ensayos.

Se fabrica la pasta agregando agua al cemento, se mezcla mecánicamente, se toma la pasta, y se lanza de una mano a otra, formando una bola que es introducida en el anillo del aparato de Vicat. Se centra el anillo con la pasta bajo el aparato y se suelta la barra. La pasta tendrá una consistencia normal cuando la barra marque el punto de (10 ± 1) mm debajo de la superficie original en 30 segundos después de haber sido liberada. (ASTM C187)

Propiedades del mortero endurecido

Resistencia a la compresión

La resistencia a la compresión del mortero es la característica cuantificable más común usada por ingenieros, su resistencia suele ser medida mediante ensayo de laboratorio rompiendo probetas cubicas en una máquina que mide la resistencia bajo condiciones de compresión, y cuyo valor se obtendrá de la relación de fuerza axial aplicada entre el área de la sección cargada, usándose de unidad el kg/cm2 en nuestro medio.

Los resultados de los ensayos de resistencia a la compresión son utilizados para constatar que el mortero elaborado cumpla las especificaciones, requisitos control de la calidad f'c y su aceptación determinados en el proyecto.

2.2.2 Formulación de hipótesis

2.2.2.1 Hipótesis general

Al analizar los tipos de cementos pórtland Tipo I se optimiza las propiedades físico-mecánicas del cemento en Lima Metropolitana

2.2.2.2 Hipótesis específicas

- 1. Al establecer el tiempo de fraguado se optimiza la fragua inicial y final del cemento pórtland Tipo I en Lima Metropolitana.
- 2. Al determinar la finura del cemento pórtland Tipo I se optimiza en la resistencia a la compresión en Lima Metropolitana.

CAPÍTULO III: METODOLOGÍA

3.1 Tipología

3.1.1 Tipo y nivel de Investigación

La investigación es de orientación aplicada, porque resuelve los problemas del

proceso constructivo en la zona ya mencionada. De enfoque cuantitativo,

porque se obtendrá como resultados de los ensayos, valores numéricos. Además,

es de **tipo descriptivo**, porque al observar el problema se describe tal y como es.

Por último, la recolección de datos es **prolectiva** porque se obtendrán nuevos

datos para realizar la investigación.

Es de nivel **Descriptivo**, porque obtendremos como resultados características y

valores de acuerdo al variar de los indicadores.

3.1.2 Diseño de la Investigación

El diseño de la investigación es experimental, porque se manipulan los datos

para hallar el diseño; longitudinal, porque se toman más de dos veces el dato

para realizar ensayos, muestras, roturas; y finalmente Prospectivo, porque se

realizarán pruebas y ensayos para obtener datos e información propia.

3.2 Variables

Variable independiente : Cementos Pórtland Tipo I

Indicadores: Tiempo

Finura del cemento

Variable dependiente : Propiedades físicas del cemento

Indicadores: Fragua inicial y final

Resistencia a la compresión

11

3.2.1 Operacionalización de variables

Tabla N° 1: Operacionalización de Variables.

OPERACIONALIZACIÓN DE VARIABLES			
VARIABLES	INDICADORES	INDICES	INSTRUMENTOS
<u>Variable</u>	Tiempo	Minuto	Libros Normas Técnicas Ensayos de Laboratorio
Independiente Tipos de cementos	Finura del cemento	Porcentaje	Libros Normas Técnicas Ensayos de Laboratorio Fichas Técnicas
<u>Variable</u> Dependiente	Fragua Inicial y Final	Minuto	Libros Normas Técnicas Ensayos de Laboratorio
Propiedades Físicas del cemento	Resistencia a la Compresión	kg/cm2	Libros Normas Técnicas Ensayos de Laboratorio Fichas Técnicas

Fuente: Elaboración Propia

3.3 Población y muestra

La población: Para cada cemento Tipo I se tomarán 10 cubos para la realización de los ensayos, en total 160 cubos e mortero. (ver tabla N°3).

La muestra: Está conformada por 4 Cementos de Tipo I y finalmente se obtendrá el resultado para la prueba de compresión para cada edad indicada: 3, 7, 14 y 28 días. La muestra será en total 16 cubos de mortero (ver tabla N°2).

Tabla N° 2: Total de cementos pórtland Tipo I

Cementos Pórtland Tipo I	Cantidad
Sol	1
Quisqueya	1
Andino	1
Pacasmayo	1
Total de Cementos Pórtland Tipo I	4

Fuente: Elaboración Propia

Tabla N° 3: Cantidad de cubos a ensayar por edad para cada cemento pórtland Tipo I.

Engavos		F	Edad	
Ensayos	3 días	7 días	14 días	28 días
Compresión	10	10	10	10

Fuente: Elaboración Propia

3.4 Técnicas de Investigación

3.4.1 Regresión lineal

El modelo de pronóstico de regresión lineal permite hallar el valor esperado de una variable aleatoria a cuando b toma un valor específico. La aplicación de este método implica un supuesto de linealidad cuando la demanda presenta un comportamiento creciente o decreciente, por tal razón, se hace indispensable que previo a la selección de este método exista un análisis de regresión que determine la intensidad de las relaciones entre las variables que componen el modelo.

El pronóstico de regresión lineal simple es un modelo óptimo para patrones de demanda con tendencia (creciente o decreciente), es decir, patrones que presenten una relación de linealidad entre la demanda y el tiempo (ver figura N°3).

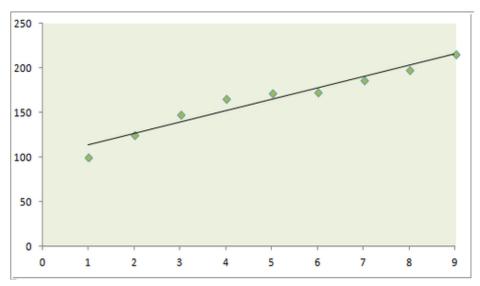


Figura N° 3: Recta de regresión Lineal Fuente: Ingeniería Industrial online

Existen medidas de la intensidad de la relación que presentan las variables que son fundamentales para determinar en qué momento es conveniente utilizar regresión lineal.

El objetivo de un análisis de regresión es determinar la relación que existe entre una variable dependiente y una o más variables independientes. Para poder realizar esta relación, se debe postular una relación funcional entre las variables.

3.4.2 Asimetría

Esta medida nos permite identificar si los datos se distribuyen de forma uniforme alrededor del punto central (Media aritmética). La asimetría presenta tres estados diferentes figura N° 4cada uno de los cuales define de forma concisa como están distribuidos los datos respecto al eje de asimetría. Se dice que la asimetría es positiva cuando la mayoría de los datos se encuentran por encima del valor de la media aritmética, la curva es Simétrica cuando se distribuyen aproximadamente la misma cantidad de valores en ambos lados de la media y se conoce como asimetría negativa cuando la mayor cantidad de datos se aglomeran en los valores menores que la media (ver figura N°4).

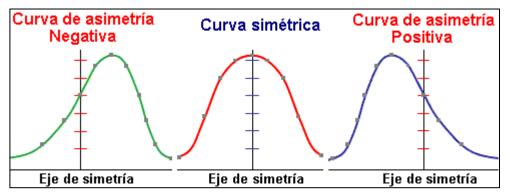


Figura Nº 4: Estados de asimetría

Fuente: SPSS Free

El Coeficiente de asimetría, se representa mediante la ecuación matemática,

Fórmula I: Coeficiente de Asimetría

$$g_{1} = \frac{\frac{1}{n} \sum (X_{i} - \overline{X})^{3} * n_{i}}{\left(\frac{1}{n} \sum (X_{i} - \overline{X})^{2} * n_{i}\right)^{\frac{3}{2}}}$$
....(I)

Donde (g1) representa el coeficiente de asimetría de Fisher, (Xi) cada uno de los valores, (\overline{X}) la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta ecuación se interpretan:

(g1 = 0): Se acepta que la distribución es Simétrica, es decir, existe aproximadamente la misma cantidad de valores a los dos lados de la media. Este valor es difícil de conseguir por lo que se tiende a tomar los valores que son cercanos ya sean positivos o negativos (\pm 0.5).

(g1 > 0): La curva es asimétricamente positiva por lo que los valores se tienden a reunir más en la parte izquierda que en la derecha de la media.

(g1 < 0): La curva es asimétricamente negativa por lo que los valores se tienden a reunir más en la parte derecha de la media.

Desde luego entre mayor sea el número (Positivo o Negativo), mayor será la distancia que separa la aglomeración de los valores con respecto a la media.

3.5 Técnicas de Recolección de datos

3.5.1 Técnica de muestreo

Realizado el diseño de la mezcla de mortero, se procede a la recolección de datos para su procesamiento. Para iniciar este proceso, se inicia con las técnicas de muestreo no probabilísticas, las muestras son representativas para cada diseño a realizar. Además, que se fundamenta con el Reglamento Nacional de Edificaciones en el que se indica que se considera como un ensayo de resistencia al promedio de las resistencias de dos pruebas hechas de la misma muestra de mortero y ensayadas a los 28 días o a la edad de ensayo establecida para la determinación de f'c.

3.5.2 Realización de ensayos.

Luego de determinarse la cantidad de muestras, se procede a realizar los ensayos, previo y post vaciado para determinar las propiedades físico-mecánicas de los cementos

3.5.3 Validez y confiabilidad de los instrumentos

1. Equipo : Máquina de compresión axial electro – hidráulica

digital (Figura N° 5)

Marca : ELE – INTERNATIONAL

Modelo : 37-5574/06 Fecha de calibración : 24-04-2017

Certificado de calibración : CMC-049-2017 (Ver Anexo)

Condiciones : Óptima

Figura N° 5: Máquina de compresión axial Electro – hidráulica Fuente: Elaboración Propia

2. Equipo : Aparato de Vicat (Figura N° 6) Marca : ELE – INTERNATIONAL

Condiciones : Óptima

Figura N° 6: Aparato de Vicat Fuente: Elaboración Propia

3. Equipo : Balanza (Figura N° 7)

Marca : OHAUS

Modelo : Adventurer Pro – AV8101

Tipo : Electrónica Capacidad Máx. : 8100 g. Fecha de calibración : 24-03-2017 Certificado de calibración : CCB-051-2017 (Ver Anexo)

Condiciones : Óptimas

Figura N° 7: Balanza Fuente: Elaboración Propia

4. Equipo : Batidora (Figura N° 8)

Marca : HOBART

Modelo : Batidora N50

Tipo : Electrónica

Fecha de calibración : 24-03-2017

Certificado de calibración : CCB-051-2017 (Ver Anexo)

Condiciones : Óptimas

Figura N° 8: Batidora Fuente: Elaboración Propia

3.6 Aspectos éticos

La presente investigación ha sido realizada bajo las referencias de otras investigaciones elaboradas anteriormente, las que nos ha proporcionado información, métodos y técnicas para elaborar el diseño del mortero.

Los investigadores asumen la responsabilidad de los hechos, ideas y fundamentos expuestos en esta tesis, su compromiso a respetar la veracidad de los resultados, la confiabilidad de los datos suministrados y la identidad de los individuos que participan en el presente estudio, por lo cual han sido citado en la bibliografía sin alterar su contenido.

CAPÍTULO IV: PRESENTACION DE RESULTADOS

4.1 Análisis de los resultados de la investigación

4.1.1 Determinación del tiempo de fraguado del cemento hidráulico utilizando la aguja de Vicat

Una pasta que es proporcionada y mezclada a una consistencia normal, como se describe en la NTP 334.074, se moldea y se coloca en un armario húmedo y se permite realizar ajustes. Pruebas de penetración periódicas se realizan en esta pasta permitiendo que una aguja Vicat de 1 mm se asiente en la muestra. El tiempo inicial de fraguado es el tiempo transcurrido entre el contacto inicial el cemento con el agua y el momento en que la penetración se mide o se calcula que sea 25 mm. El tiempo de penetración final es el tiempo transcurrido entre el contacto inicial de cemento y agua y el momento en que la aguja Vicat no deja una impresión circular completa en la superficie de la pasta.

Los siguientes resultados muestran el tiempo de fraguado inicial y final junto a sus correspondientes gráficas por cada cemento Tipo I respectivamente (Sol, Quisqueya, Pacasmayo y Andino). Se realizaron 40 ensayos de tiempo de fraguado.

Tabla Nº 4: Resumen General de tiempo de fraguado del cemento Sol

(1)								UNIVERSID	UNIVERSIDAD RICARDO PALMA	OO PALMA
PART OF THE PART O								FACU	FACULTAD DE INGENIERÍA	GENIERÍA
AINO AINO						LA	BORATOR	IO DE ENS.	LABORATORIO DE ENSAYO DE MATERIALES	TERIALES
A CONTRACTOR OF THE PARTY OF TH	DETERMIN	NACION DI	L TIEMPO	ACION DEL TIEMPO DE FRAGUADO DEL	ADO DEL C	CEMENTO HIDRAULICO UTILIZANDO LA AGUJA VICAT	DRAULIC	O UTILIZAN	VDO LA AGI	JA VICAT
DESCRIPCIÓN	: Tiempo de	Tiempo de fraguado Cemento Sol	ento Sol			NORMA	: NTP 334.006	900"		
ntervo	T. T.					FECHA	: 10-01-18			
DISENO	varios					HEHO POR	: Arturo H	Arturo Huarcaya Gonzales	ales	
Tiempo					Penetrac	Penetración (mm)				
(min)	M-1	M-2	M-3	M-4	M-5	M-6	M-7	M-8	6-M	M-10
15	40	40	40	40	40	40	40	40	40	40
30	40	40	39	40	40	40	40	40	40	40
45	40	40	39	40	40	39	40	39	39	40
09	40	40	39	39	39	39	39	39	39	39
75	40	37	39	39	39	39	39	39	39	39
06	38	37	98	38	38	38	38	38	38	38
105	38	37	36	36	38	38	38	38	38	38
120	32	32	98	32	30	35	35	36	37	35
135	27	56	87	27	28	30	27	30	35	30
150	17	13	15	14	18	17	10	15	13	10
165	6	7	10	8	6	7	7	10	4	3
180	3	2	9	9	9	4	4	4	2	2
195	1	1	4	4	3	1	2	3	1	1
210	1	1	1	2	1	1	1	3	1	1
225	0	1	1	1	1	1	1	1	0	1
240		0	0	0	0	0	0	0		0
Tiempo de fraguado inicial (min)	138	136	138	137	140	141	137	140	142	139
Tiempo de fraguado final (min)	225	240	240	240	240	240	240	240	225	240
Fuente: Elaboración propia										

Fuente: Elaboración propia

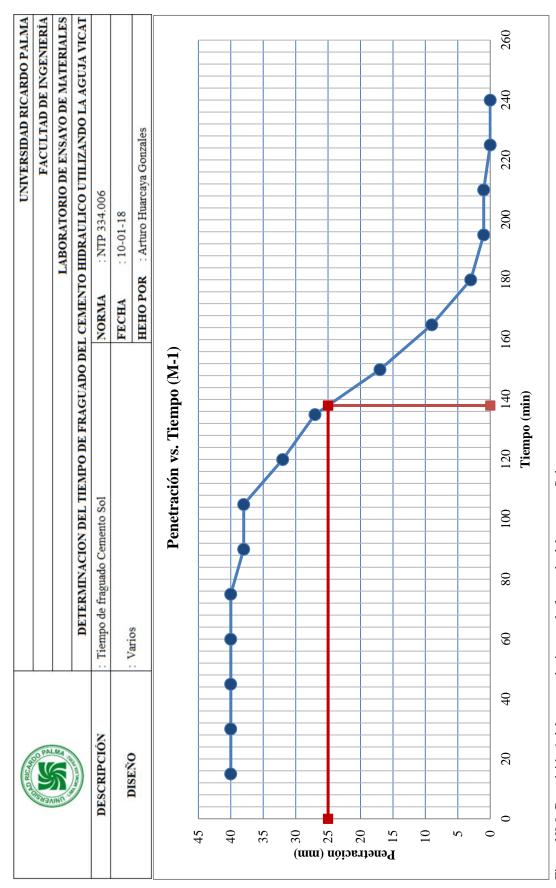


Figura N° 9: Repetición 1 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

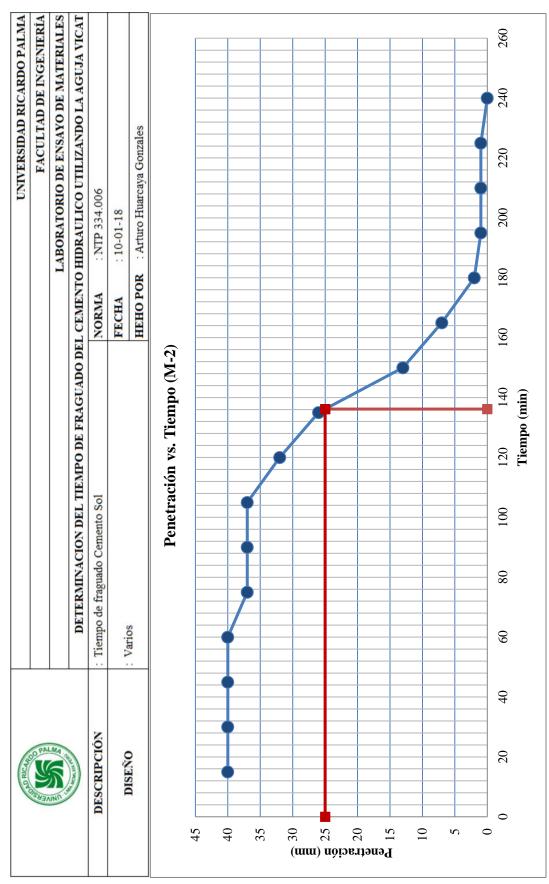


Figura $\rm N^{\circ}$ 10: Repetición 2 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

23

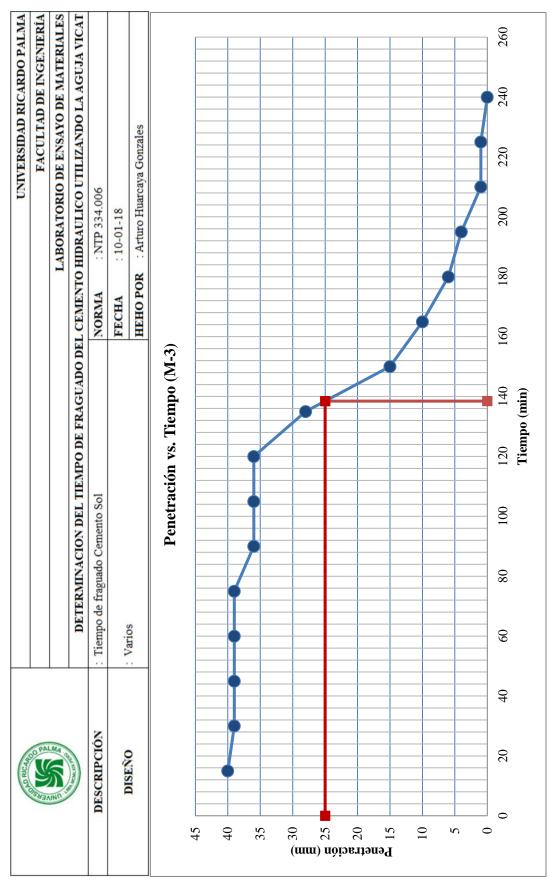


Figura Nº 11: Repetición 3 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

24

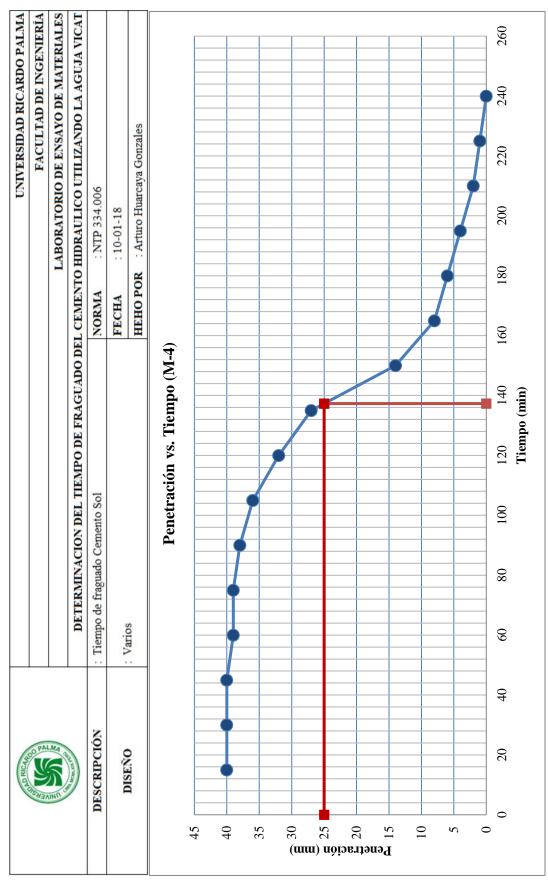


Figura N° 12: Repetición 4 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia



Figura N° 13: Repetición 5 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

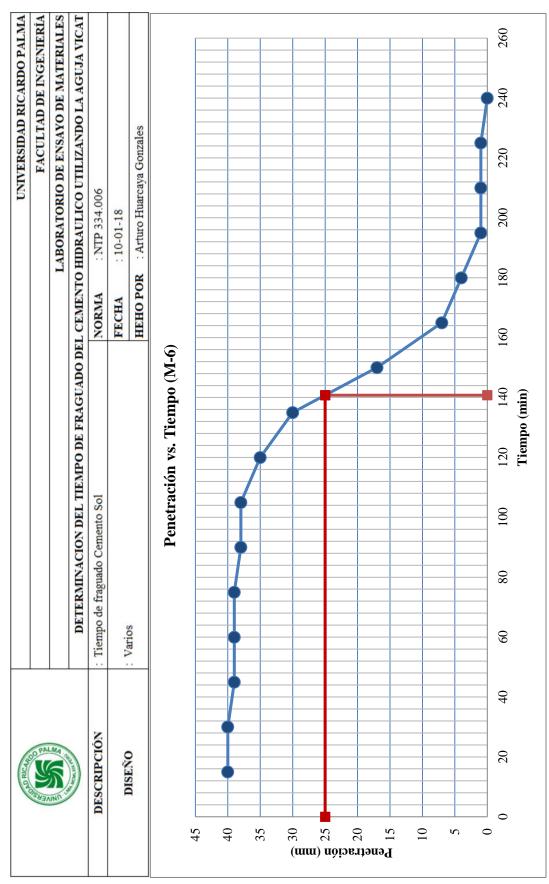


Figura Nº 14: Repetición 6 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

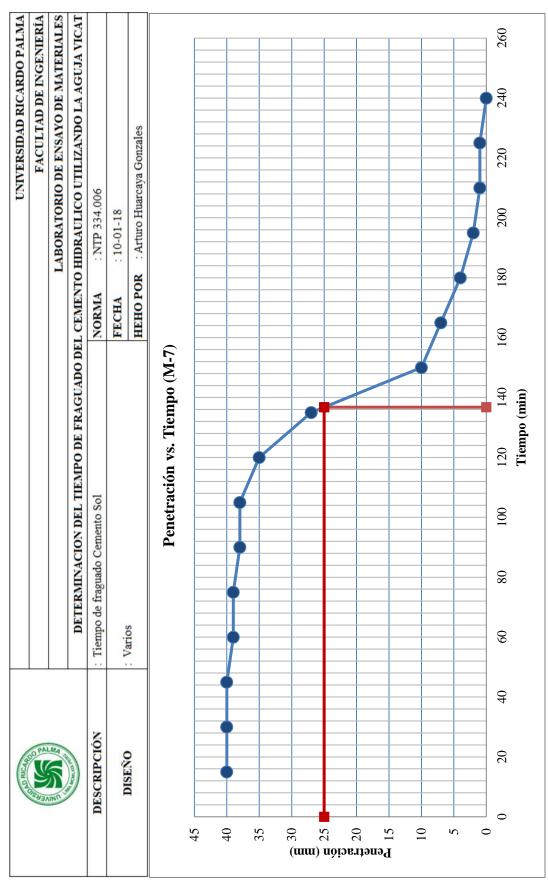


Figura Nº 15: Repetición 7 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

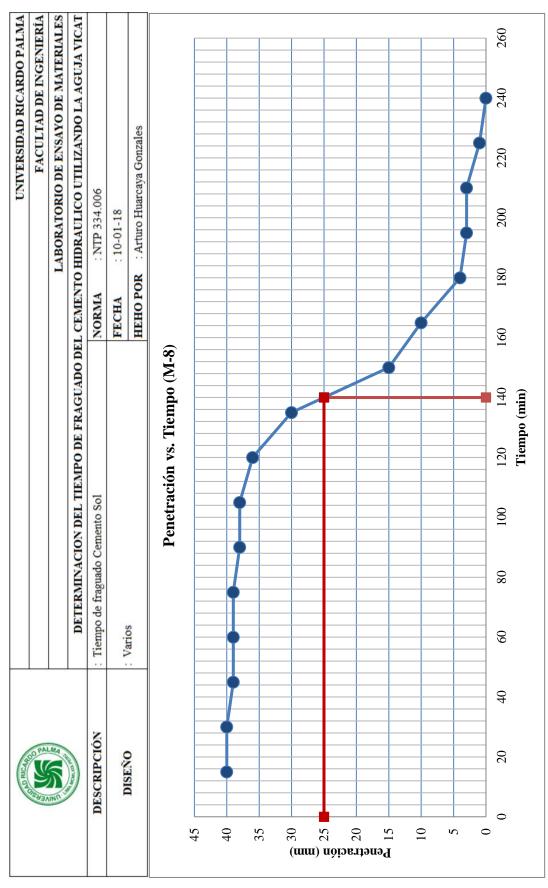


Figura N° 16: Repetición 8 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia



Figura Nº 17: Repetición 9 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

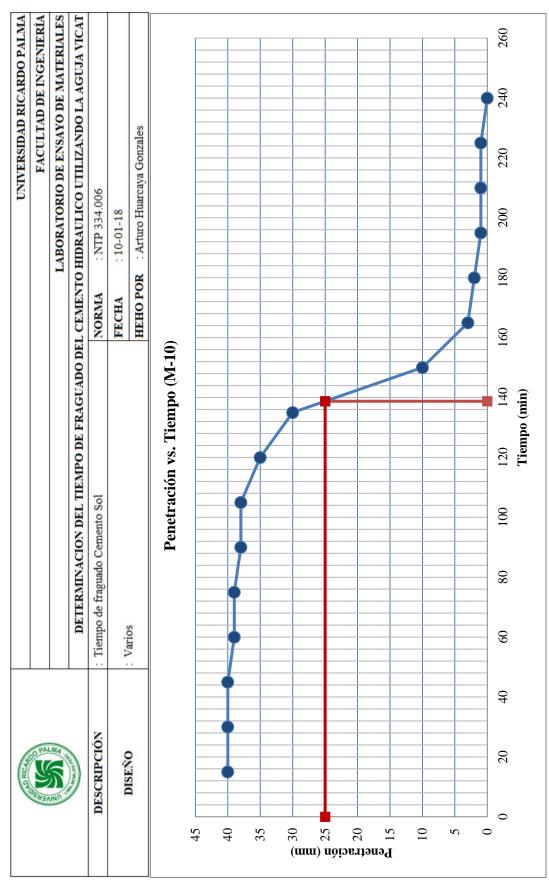


Figura Nº 18: Repetición 10 del ensayo de tiempo de fraguado del cemento Sol Fuente: Elaboración Propia

31

Tabla N° 5: Resumen General de tiempo de fraguado del cemento Quisqueya

June as minus mannes to the most	and an ac		المعاصم ما	3						
NO RICAS								UNIVERSIDAD RICARDO PALMA	AD RICARI	DO PALMA
O PA								FACU	FACULTAD DE INGENIERÍA	GENIERÍA
S IND						LA	BORATOR	LABORATORIO DE ENSAYO DE MATERIALES	AYO DE MA	TERIALES
A CONTRACTOR OF THE PARTY OF TH	DETERMIN		ACION DEL TIEMPO DE FRAGUADO DEL	DE FRAGU	ADO DEL C	CEMENTO HIDRAULICO UTILIZANDO LA AGUJA VICAT	DRAULIC	O UTILIZAN	DO LA AG	UJA VICAT
DESCRIPCIÓN	: Tiempo de	Tiempo de fraguado Cemento Quisqueya	ento Quisques	⁶		NORMA	: NTP 334.006	900't		
ntervo						FECHA	: 20-01-18			
DISENO	· varios					HEHO POR	: Arturo H	: Arturo Huarcaya Gonzales	ales	
Tiempo					Penetrac	Penetración (mm)				
(min)	M-1	M-2	M-3	M-4	M-5	9-W	M-7	8-M	6-W	M-10
15	40	40	40	40	40	40	40	40	40	40
30	40	40	40	40	40	40	40	40	40	40
45	40	40	40	40	40	40	40	40	40	40
09	40	39	39	39	40	39	39	39	39	40
75	38	36	39	39	39	39	39	39	39	38
06	38	36	39	39	39	39	39	39	39	38
105	38	36	39	39	39	39	38	38	38	38
120	35	29	34	32	34	33	36	37	37	35
135	22	22	26	24	28	25	23	25	26	22
150	8	9	14	8	6	7	13	8	11	8
165	1	2	L	1	1	3	2	1	3	1
180	0	0	3	0	0	2	0	0	0	0
195	0	0	0	0	0	0	0	0	0	0
Tiempo de fraguado inicial (min)	132	129	136	133	137	135	132	135	136	132
Tiempo de fraguado final (min)	180	180	195	180	180	195	180	180	180	180
Juente: Flaboración Pronia										

Fuente: Elaboración Propia

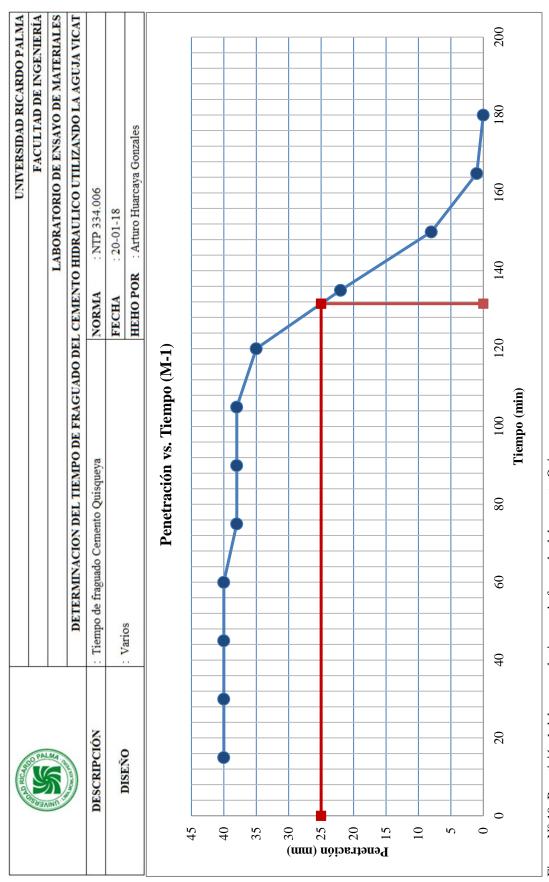


Figura N° 19: Repetición 1 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

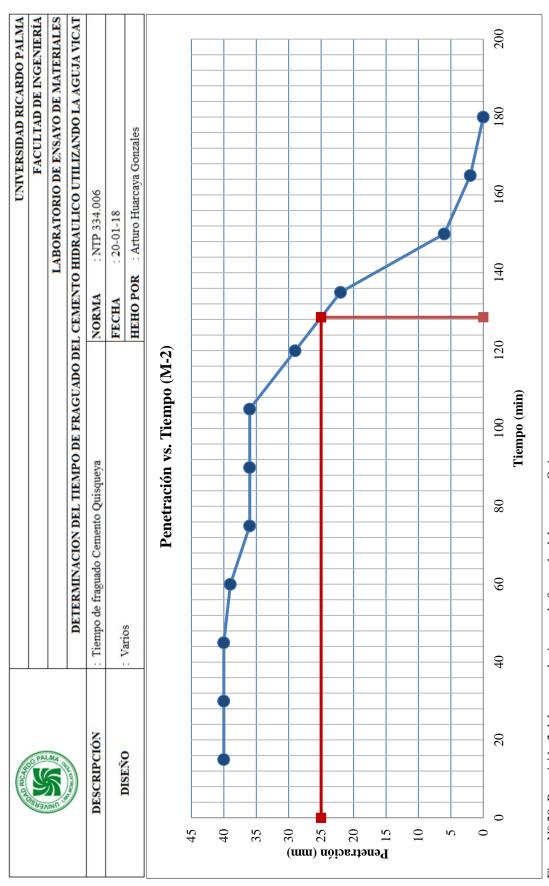


Figura $\rm N^{\circ}$ 20: Repetición 2 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

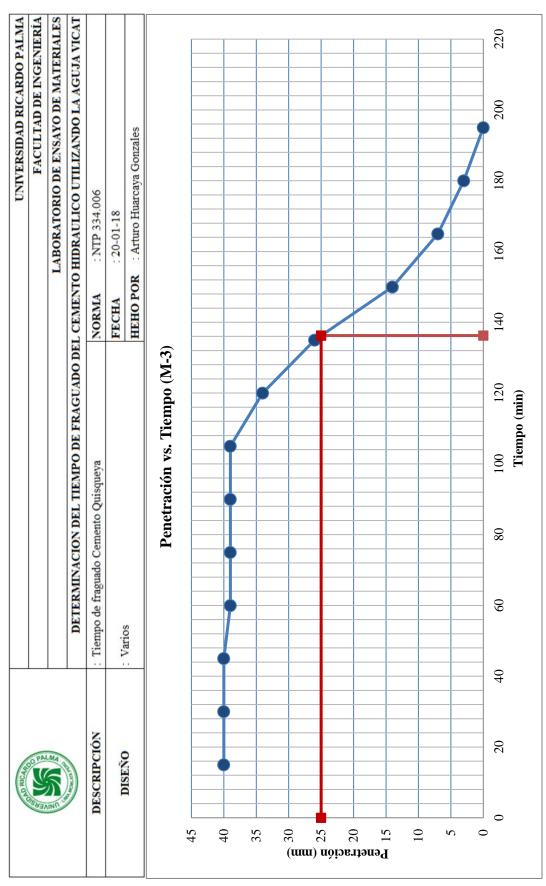


Figura N° 21: Repetición 3 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

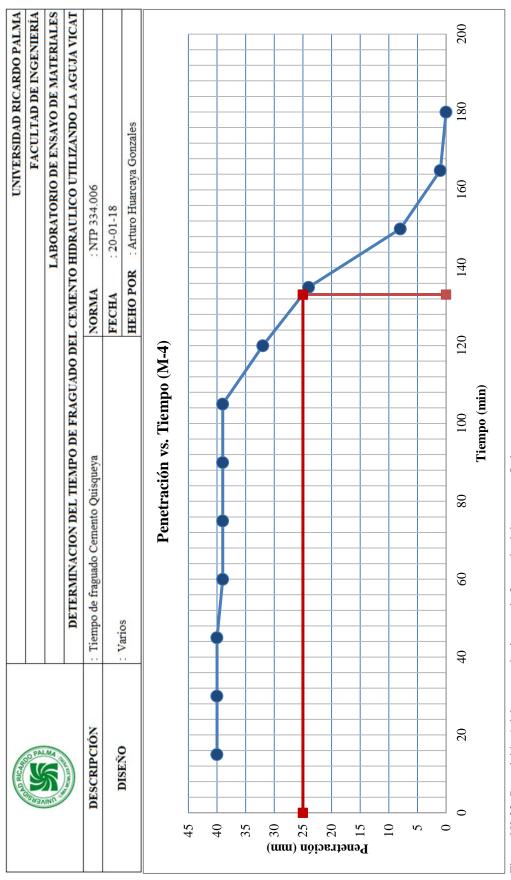


Figura N° 22: Repetición 4 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

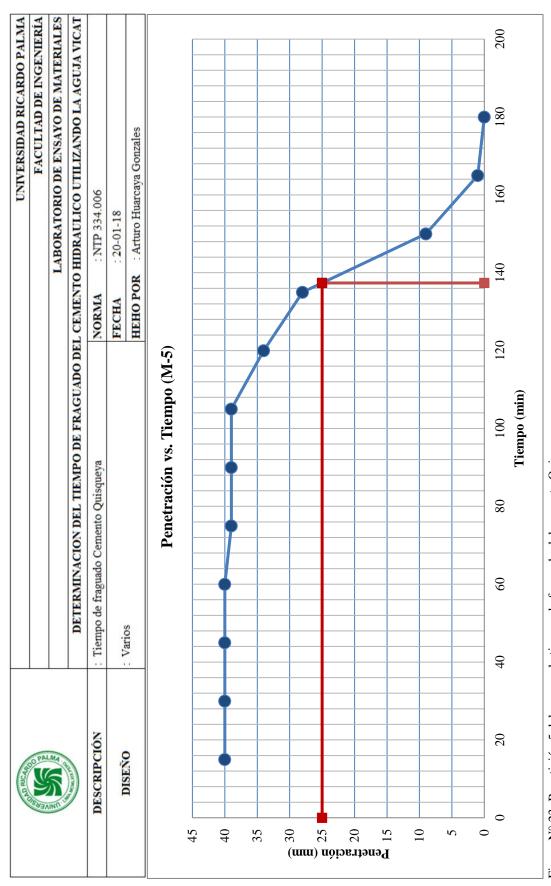


Figura N° 23: Repetición 5 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

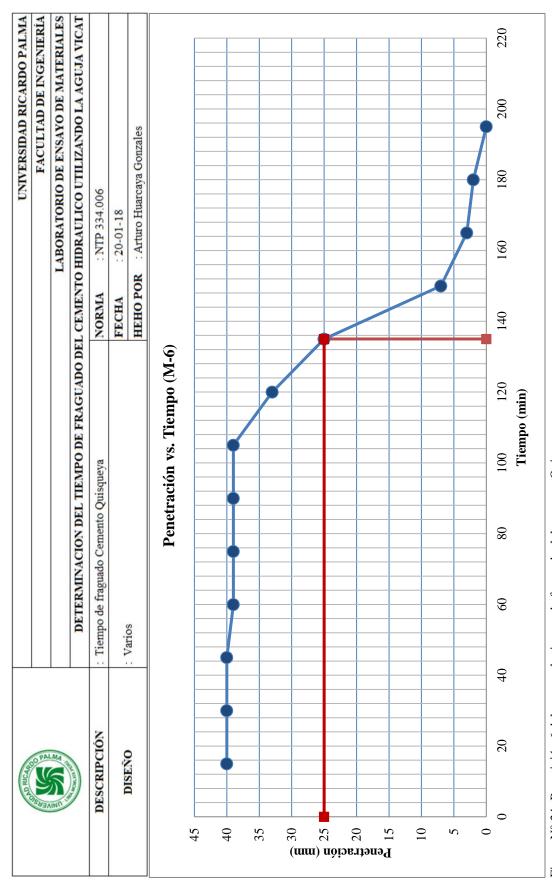


Figura Nº 24: Repetición 6 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

Figura N° 25: Repetición 7 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

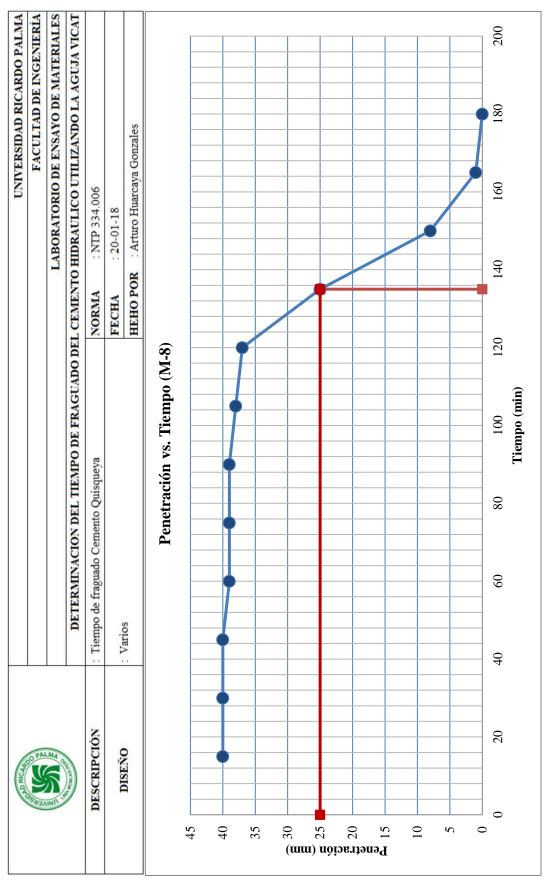


Figura N° 26: Repetición 8 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

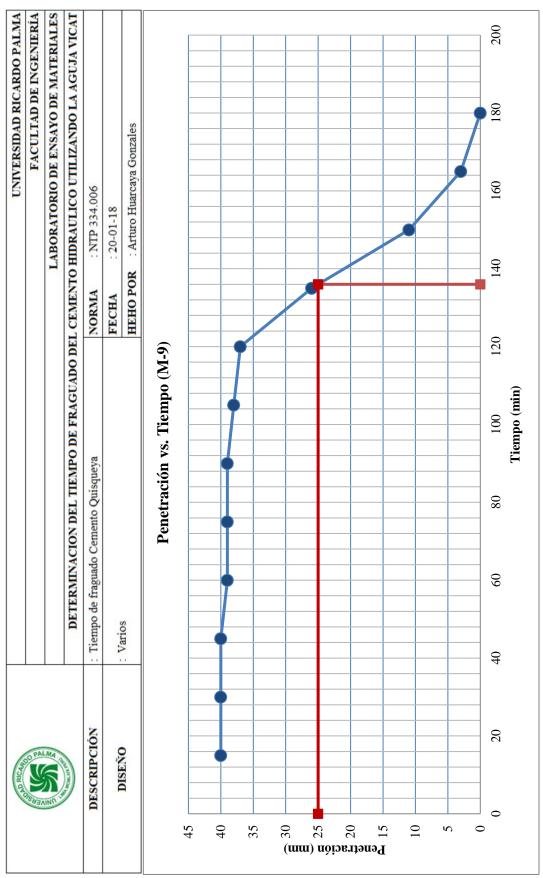


Figura N° 27: Repetición 9 del ensayo de tiempo de fraguado del cemento Quisqueya Fuente: Elaboración Propia

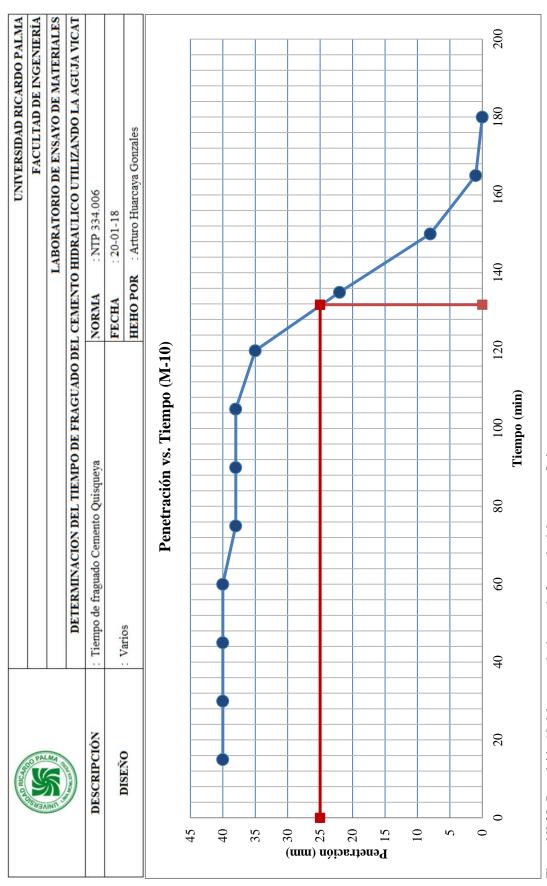


Figura N° 28: Repetición 10 del ensayo de tiempo de fraguado del cemento Quisque ya Fuente: Elaboración Propia

Tabla Nº 6: Resumen General de tiempo de fraguado del cemento Pacasmayo

1	0									
SO RICAD								INI	UNIVERSIDAD RICARDO PALMA	ARDO PALMA
D PAR WEI									FACULTAD DE INGENIERÍA	INGENIERÍA
SAINT I							LAJ	SORATORIO D	LABORATORIO DE ENSAYO DE MATERIALES	MATERIALES
district was all			DETER	MINACION DE	L TIEMPO DE 1	DETERMINACION DEL TIEMPO DE FRAGUADO DEL CEMENTO HIDRAULICO UTILIZANDO LA AGUJA VICAT	CEMENTO HI	DRAULICO UT	ILIZANDO LA	AGUJA VICAT
DESCRIPCIÓN	: Tiempo de	Tiempo de fraguado Cemento Pacasmayo	ento Pacasma	iyo		NORMA	: NTP 334.006	900:		
,						FECHA	: 10-02-18			
DISENO	: Varios					HEHO POR	: Arturo H	: Arturo Huarcaya Gonzales	ales	
Tiempo					Penetrac	Penetración (mm)				
(min)	M-1	M-2	M-3	M-4	M-5	9-W	M-7	W-8	6-M	M-10
15	40	40	40	40	40	40	40	40	40	40
30	40	40	40	40	40	40	40	40	40	40
45	40	40	40	40	40	40	40	40	40	40
09	39	40	39	39	38	39	40	38	40	39
75	39	39	39	39	38	39	39	38	39	39
06	37	39	39	37	38	39	39	38	39	36
105	37	39	34	37	38	39	39	37	37	36
120	37	32	34	37	31	30	31	37	37	36
135	36	30	32	36	31	27	31	36	36	31
150	36	30	26	34	31	27	30	36	36	31
165	24	26	26	32	27	25	23	24	24	24
180	15	12	11	17	16	13	18	15	16	15
195	6	6	5	11	4	7	10	6	5	6
210	2	3	2	3	1	2	1	2	1	4
225	0	0	1	0	0	0	1	0	0	1
240			0				0			0
Tiempo de fraguado inicial (min)	164	166	166	172	168	165	161	164	164	163
Tiempo de fraguado final (min)	225	225	240	225	225	225	240	225	225	240
Fuente: Elaboración Pronia										

Fuente: Elaboración Propia

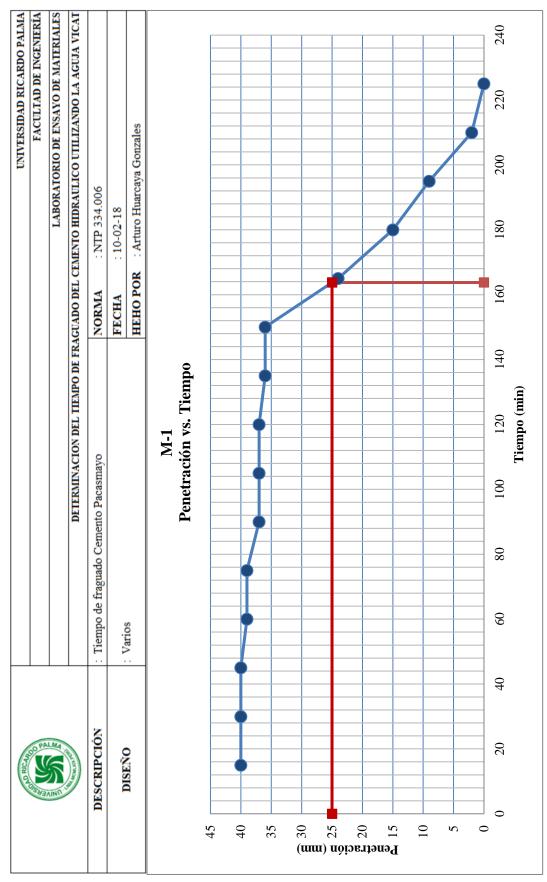


Figura N° 29: Repetición 1 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

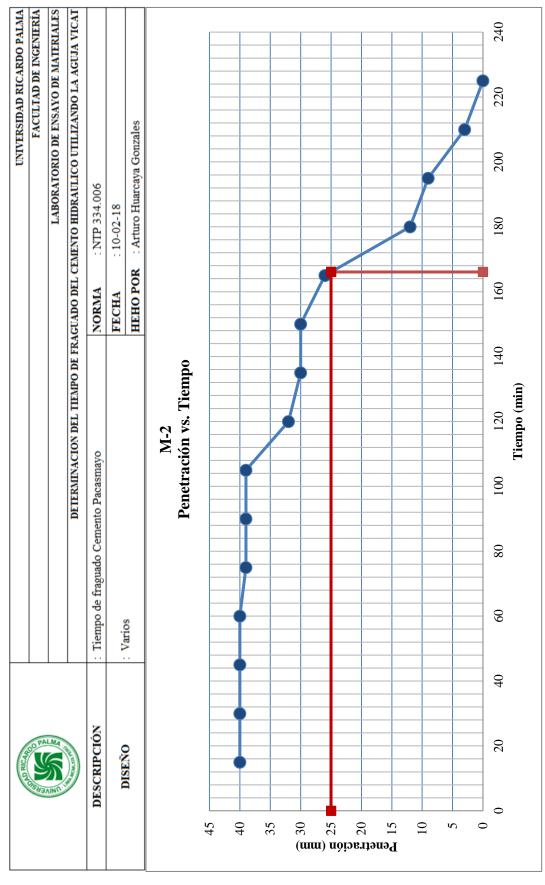


Figura N° 30: Repetición 2 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

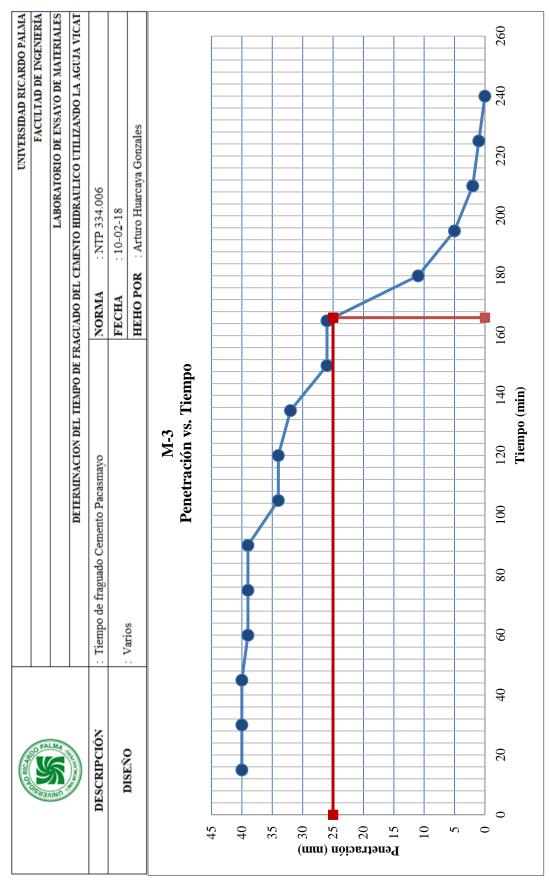


Figura Nº 31: Repetición 3 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

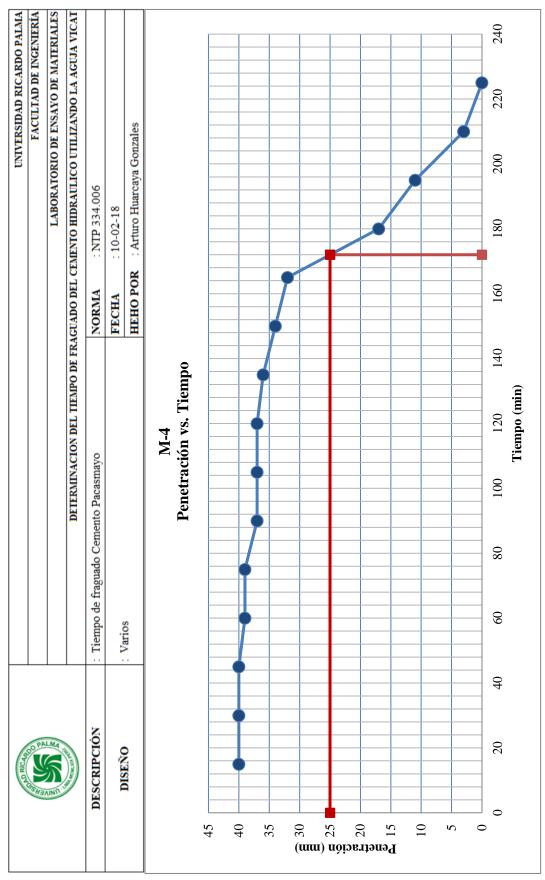


Figura N° 32: Repetición 4 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

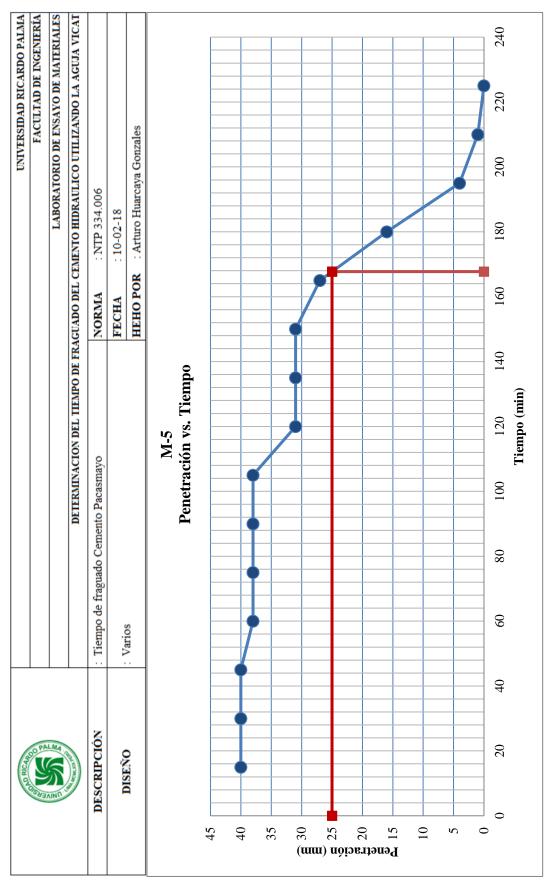


Figura N° 33: Repetición 5 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

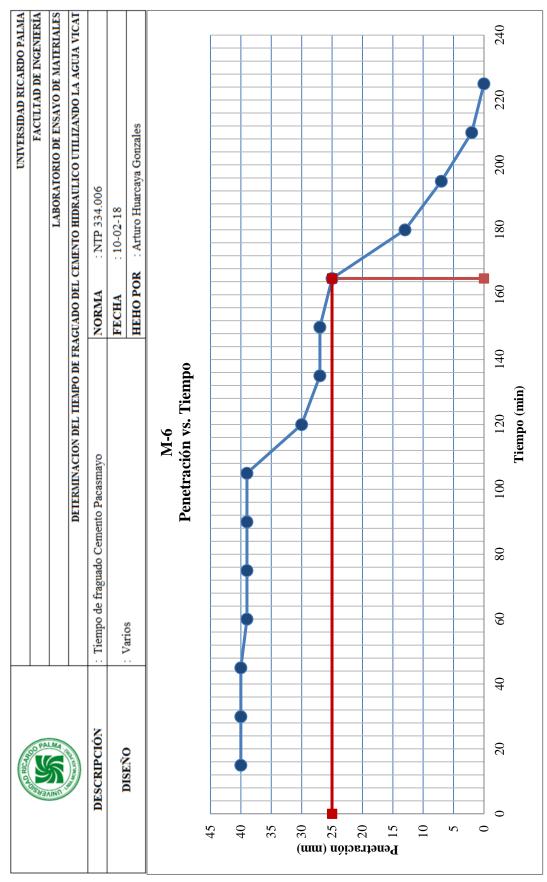


Figura Nº 34: Repetición 6 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

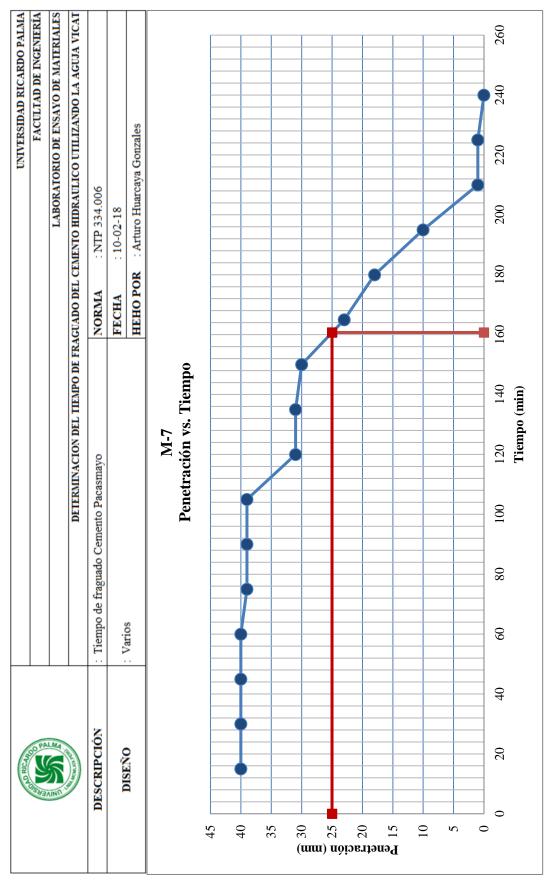


Figura Nº 35: Repetición 7 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

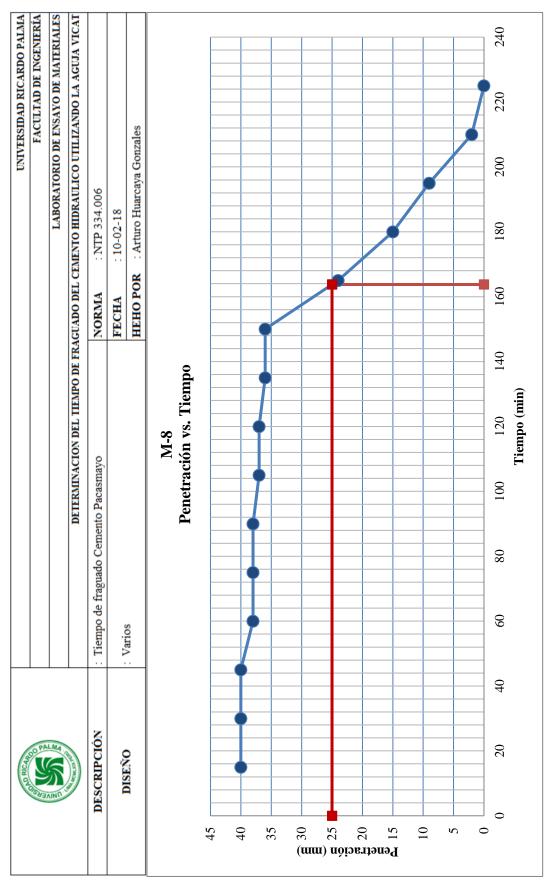


Figura Nº 36: Repetición 8 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

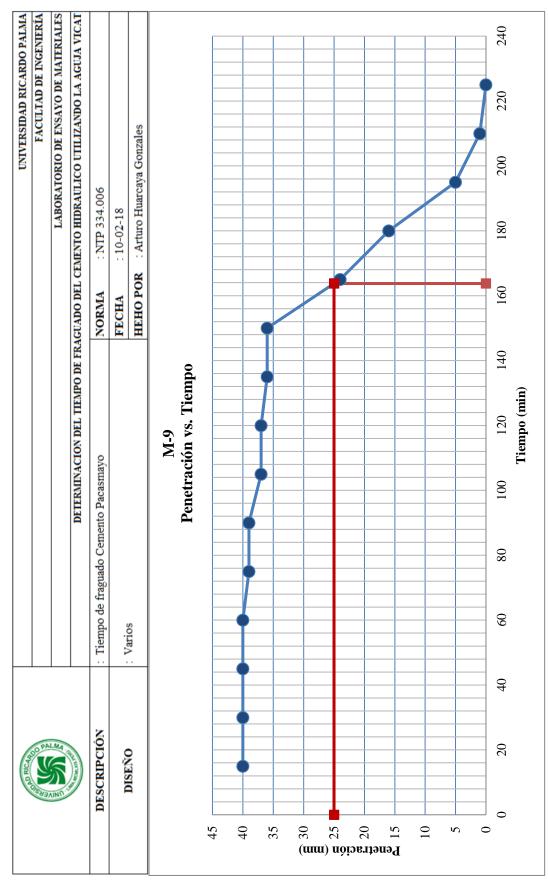


Figura N° 37: Repetición 9 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

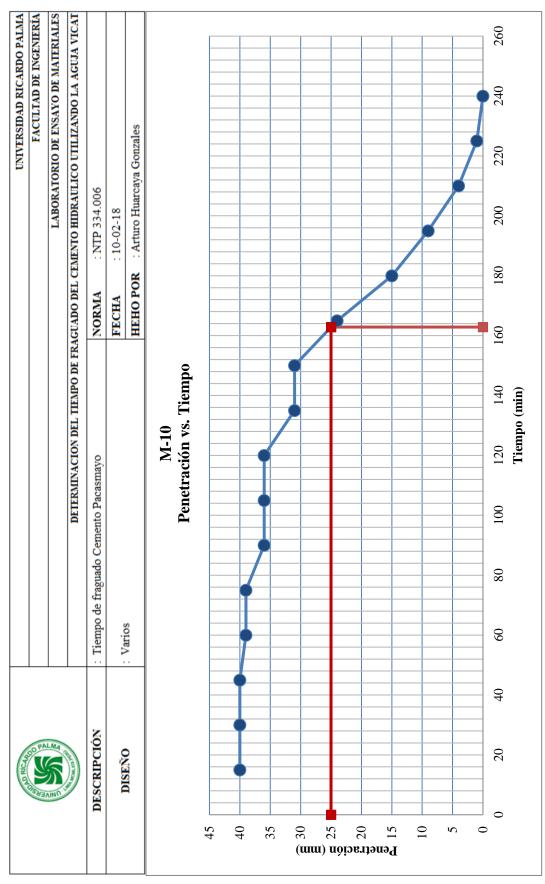


Figura N° 38: Repetición 10 del ensayo de tiempo de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

Tabla Nº 7: Resumen General de tiempo de fraguado del cemento Andino

T	0									
AND RICAR								UNIVERSIDAD RICARDO PALMA	AD RICARI	O PALMA
O PAN O								FACUI	FACULTAD DE INGENIERÍA	GENIERÍA
S NO.						T/	ABORATOR	LABORATORIO DE ENSAYO DE MATERIALES	AYO DE MA	TERIALES
day or ready	DETERMI	NACION DE	L TIEMPO	DE FRAGU	ADO DEL C	DETERMINACION DEL TIEMPO DE FRAGUADO DEL CEMENTO HIDRAULICO UTILIZANDO LA AGUJA VICAT	IDRAULIC	O UTILIZAN	DO LA AGI	JA VICAT
DESCRIPCIÓN	ep odwaiI :	Tiempo de fraguado Cemento Andino	ento Andino			NORMA	: NTP 334.006	900"		
DISEÑO	. Vocaci					FECHA	: 20-02-18			
DISENO	. V 4110S					HEHO POR		Arturo Huarcaya Gonzales	ales	
Tiempo					Penetrac	Penetración (mm)				
(min)	I-M	M-2	M-3	M-4	M-5	9-W	M-7	M-8	M-9	M-10
15	40	40	40	40	40	40	40	40	40	40
30	40	40	40	40	40	40	40	40	40	40
45	40	40	40	40	40	40	40	40	40	40
09	40	40	40	40	40	40	40	40	40	40
75	40	40	40	39	40	40	40	40	40	37
06	38	38	39	38	38	38	39	40	38	37
105	88	38	39	38	38	38	39	38	38	37
120	38	38	39	38	38	38	39	38	38	37
135	28	27	29	29	30	30	28	29	29	28
150	20	22	17	21	20	22	17	18	19	22
165	10	12	8	11	10	11	9	8	6	11
180	1	1	2	1	1	2	1	1	1	1
195	0	1	1	0	0	0	1	0	0	0
210		0	0				0			
Tiempo de fraguado inicial (min)	141	141	140	143	143	144	139	140	141	143
Tiempo de fraguado final (min)	195	210	210	195	195	195	210	195	195	195

Fuente: Elaboración Propia

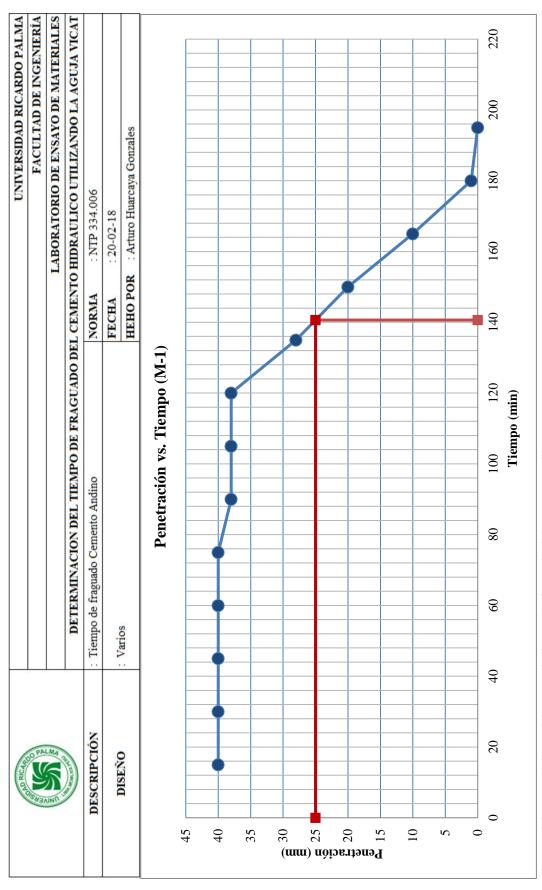


Figura $\rm N^{\circ}$ 39: Repetición 1 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

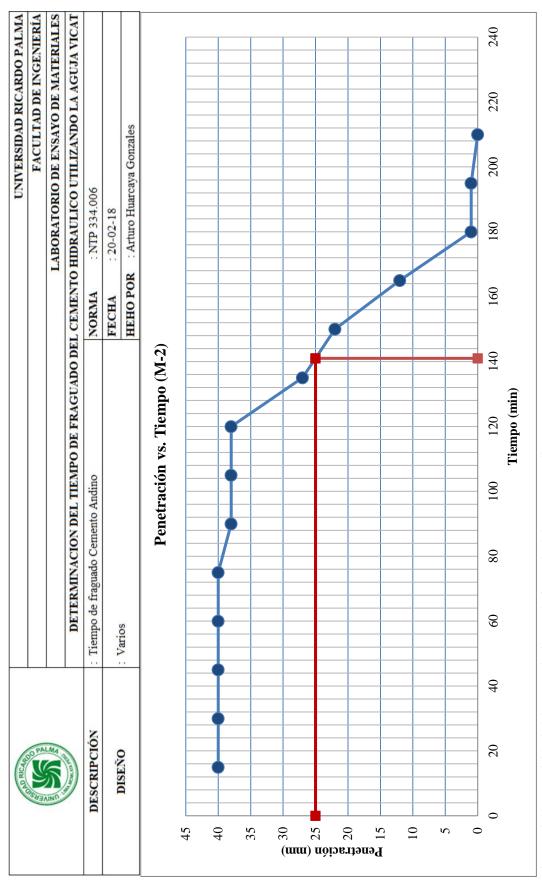


Figura N° 40: Repetición 2 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

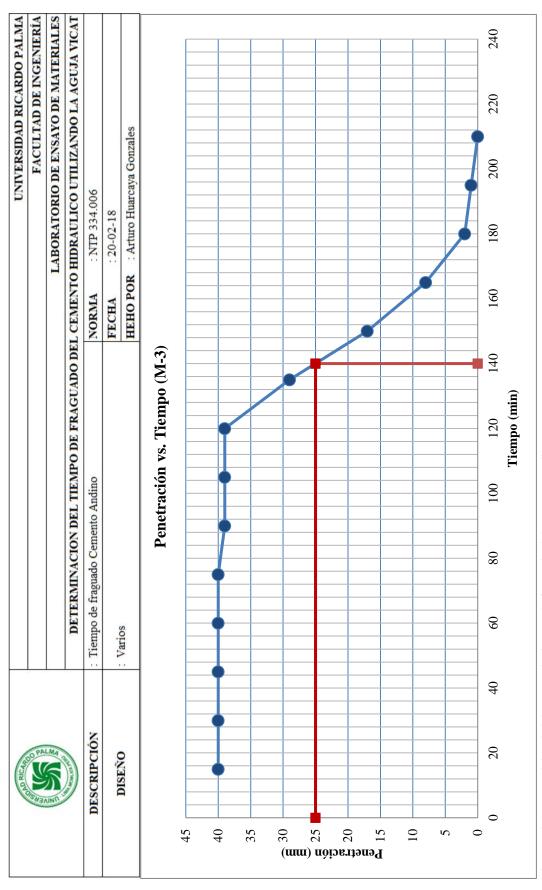


Figura N° 41: Repetición 3 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

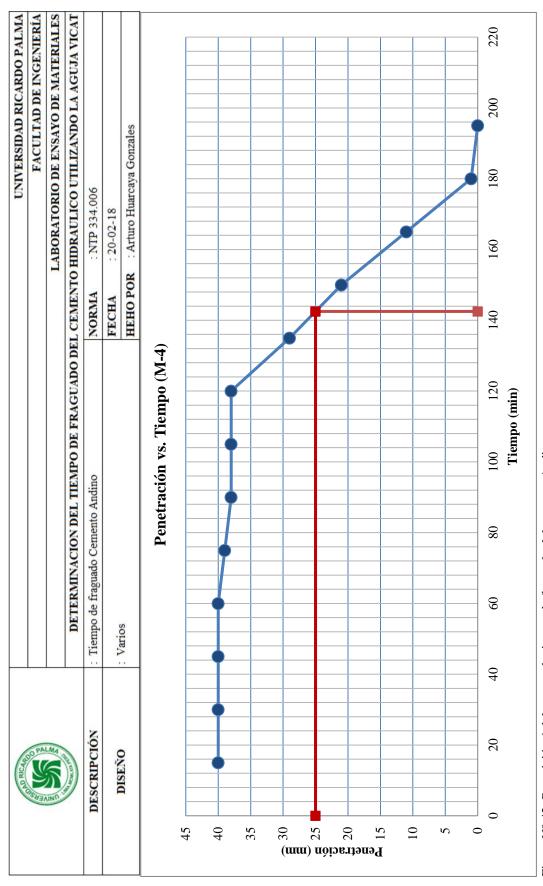


Figura N° 42: Repetición 4 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

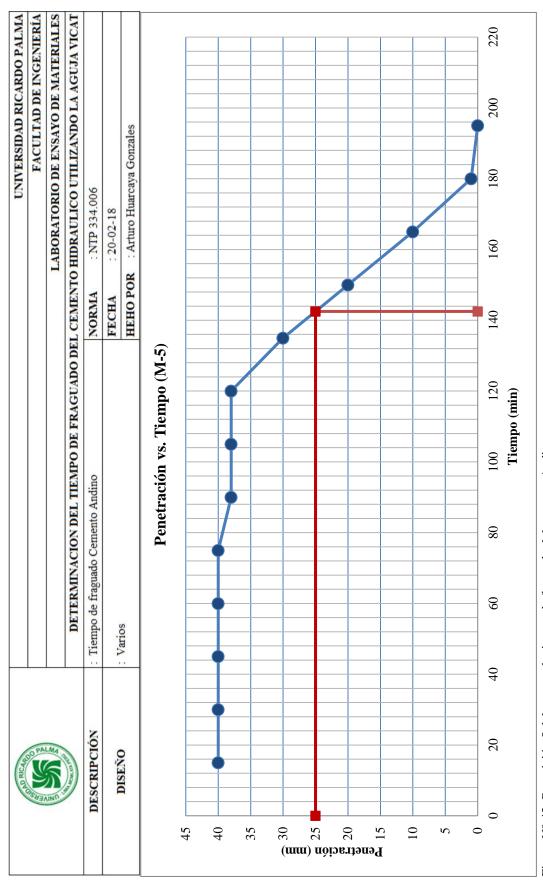


Figura N° 43: Repetición 5 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

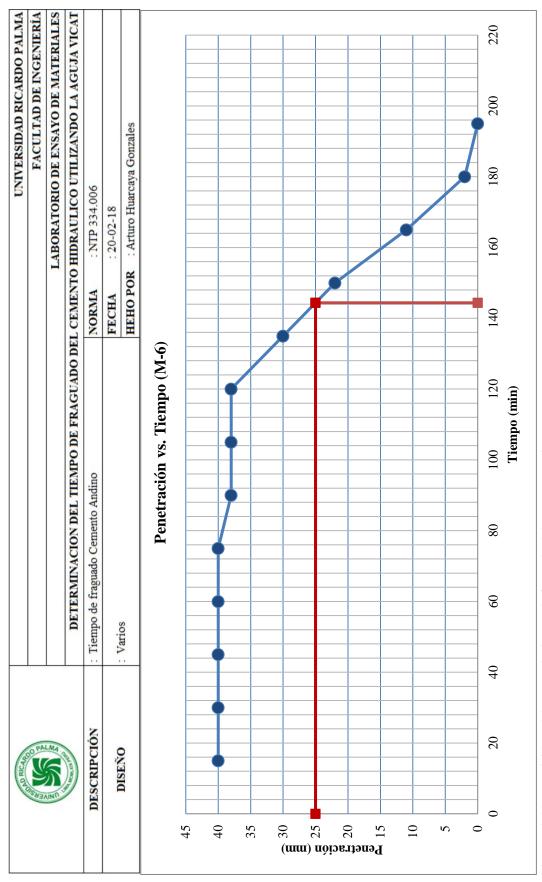


Figura N° 44: Repetición 6 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

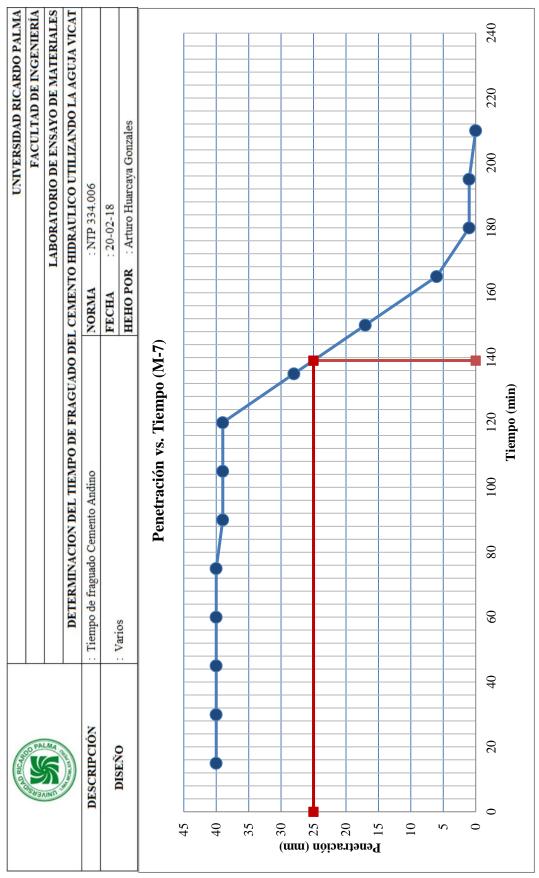


Figura N° 45: Repetición 7 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

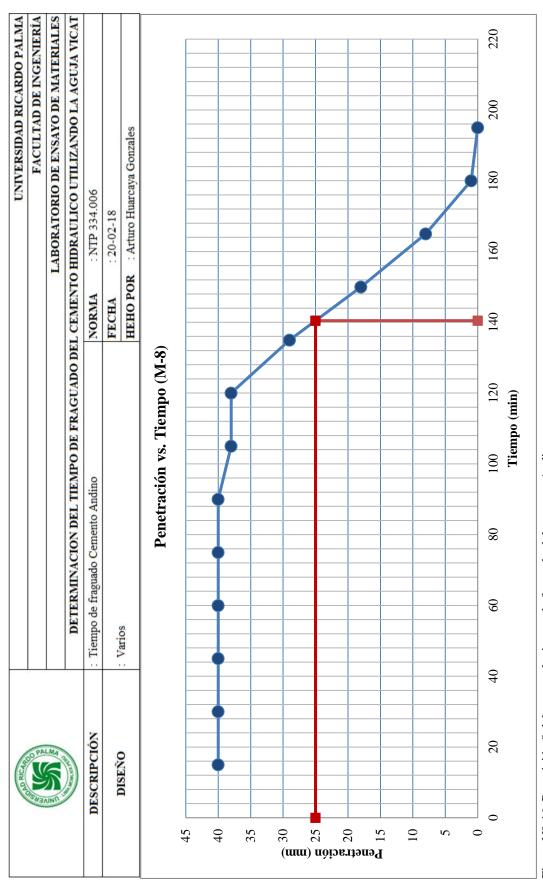


Figura N° 46: Repetición 8 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

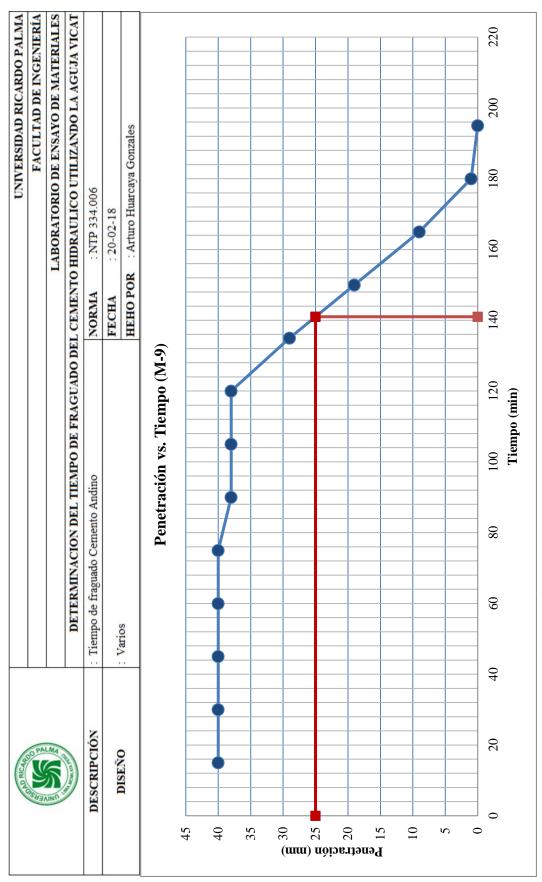


Figura N° 47: Repetición 9 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

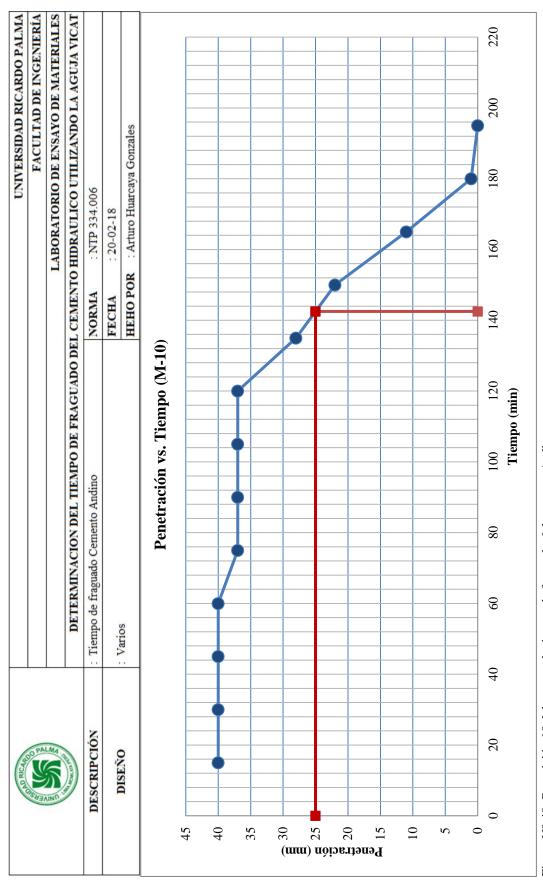


Figura N° 48: Repetición 10 del ensayo de tiempo de fraguado del cemento Andino Fuente: Elaboración Propia

4.1.2 Ensayo de la resistencia a la compresión

Se realizó el ensayo de la resistencia a la compresión, referida a la relación que hay entre la carga máxima aplicada por la unidad de área del espécimen antes de la falla.

Figura N° 49: Ensayo de Resistencia a la Compresión de cubos de mortero

Tabla N° 8: Resumen General de resistencia a la compresión del cemento Sol

Tabla N° 8: Resum	ien General de resi	istencia a la compres	sion dei cemento Soi				
OAD RICARA	UNIVERSIDAD RICARDO PALMA						
	FACULTAD DE INGENIERÍA						
	LABORATORIO DE ENSAYO DE MATERIALES						
MA. MCMLXXX. POE	ENSA	YO DE RESISTE	NCIA A LA COMPRES	IÓN CEMENTO SOL			
DESCRIPCIÓN	: Mortero	Mortero NORMA: NTP 334.051					
D. KORTÍVO	**		FECHA : 01-03	-18			
DISEÑO	: Varios		HECHO POR: Arturo Huarcaya Gonzales				
CÓDIGO	Resistencia a la compresión (Kg/cm2)						
	3 días	7 días	14 días	28 días			
Muestra 1	170	204	249	277			
Muestra 2	173	200	247	278			
Muestra 3	178	198	249	278			
Muestra 4	176	207	254	280			
Muestra 5	177	199	247	277			
Muestra 6	173	205	250	274			
Muestra 7	169	198	252	282			
Muestra 8	175	203	248	281			
Muestra 9	177	197	251	278			
Muestra 10	174	200	251	279			
Prom. (kg/cm2)	174	201	250	278			

ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO DE RESISTENCIA DE RESISTEN	RIALES				
ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMEN					
DESCRIPCIÓN MATERIA NED 224 051	FO SOL				
DESCRIPCIÓN : Mortero NORMA : NTP 334.051					
DISEÑO : Varios FECHA : 01-03-18					
HECHO POR: Arturo Huarcaya Gor	ızales				
CÓDIGO Resistencia a la compresión (Kg/cm2)	Resistencia a la compresión (Kg/cm2)				
3 días 7 días 14 días 28 día	S				
Muestra 1 170 204 249 277					

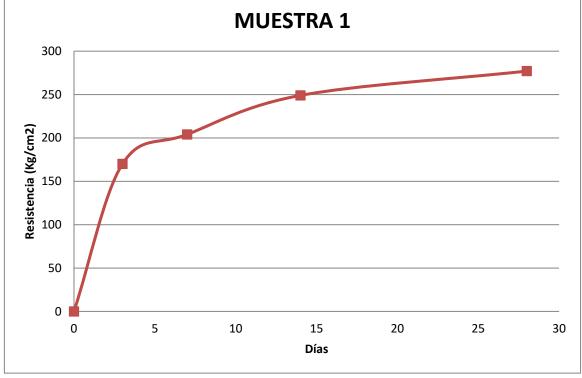


Figura N° 50: Repetición 1 del ensayo de resistencia a la compresión del cemento Sol Fuente: Elaboración Propia

OAD RICARD	UNIVERSIDAD RICARDO PALMA						
		FACULTAD DE INGENIERÍA					
		LABO	RATORIO DE ENSAY	O DE MATERIALES			
MA MCMLXXX SEE	ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO						
DESCRIPCIÓN	: Mortero		NORMA : NTP 3	334.051			
Propino	X7 :		FECHA : 01-03	-18			
DISEÑO	: Varios		HECHO POR : Arturo Huarcaya Gonzales				
CÓDIGO	Resistencia a la compresión (Kg/cm2)						
CODIGO	3 días	7 días	14 días	28 días			
Muestra 2	173	200	247	278			

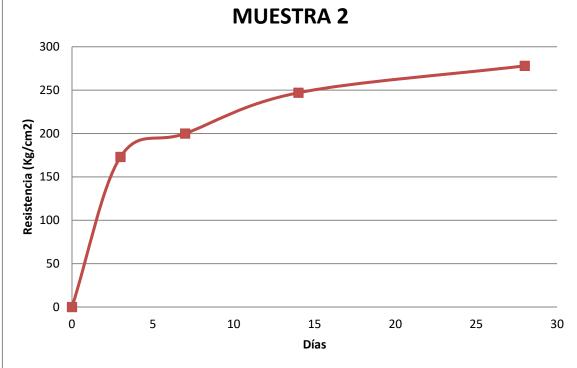


Figura N° 51: Repetición 2 del ensayo de resistencia a la compresión del cemento Sol Fuente: Elaboración Propia

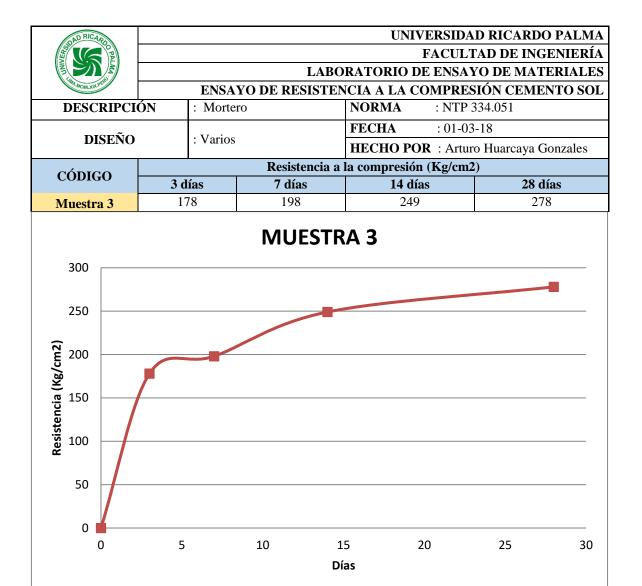
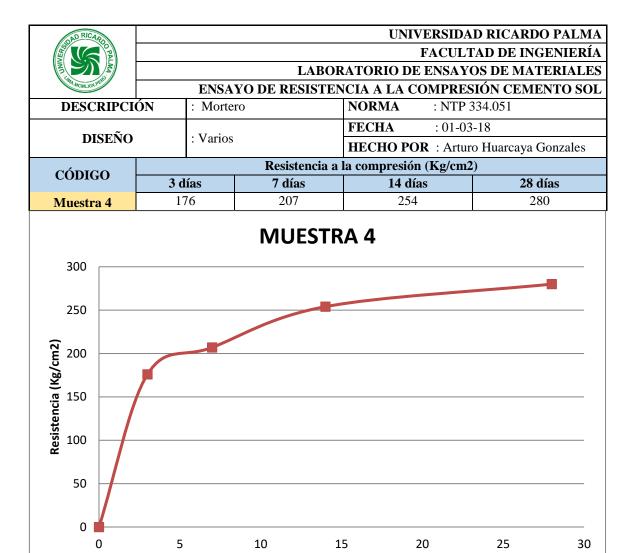



Figura N° 52: Repetición 3 del ensayo de resistencia a la compresión del cemento Sol

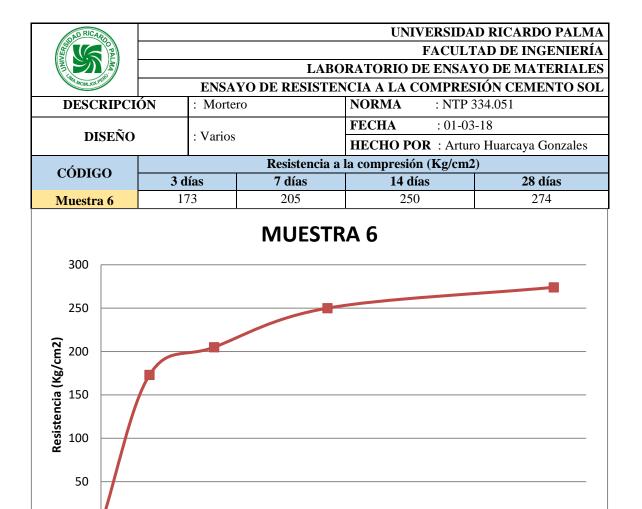

Días

Figura N° 53: Repetición 4 del ensayo de resistencia a la compresión del cemento Sol

OAD RICARD		UNIVERSIDAD RICARDO PALMA						
	\				TAD DE INGENIERÍA			
					YO DE MATERIALES			
TA.MCM_XXX.8E		ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO SO						
DESCRI	PCIÓN	CIÓN : Mortero NORMA : NTP 334.051						
DICE	DISEÑO			FECHA : 01-03	-18			
DISE	NO	: Varios	3	HECHO POR : Arturo Huarcaya Gonzales				
CÓDIGO			Resistencia a	a la compresión (Kg/cm2)				
CODIGO	3	días	7 días	14 días	28 días			
Muestra 5		177	199	247	277			
300 250 — 250 — 20								
A 100								

Figura N° 54: Repetición 5 del ensayo de resistencia a la compresión del cemento Sol Fuente: Elaboración Propia

Días

Días

Figura N° 55: Repetición 6 del ensayo de resistencia a la compresión del cemento Sol

Fuente: Elaboración Propia

DAD RICARD					AD RICARDO PALMA			
	PALM	FACULTAD DE INGENIERÍA						
- CHMA.MCMLXXX PER		LABORATORIO DE ENSAYO DE MATERIALES						
DESCR	LIPCIÓN	ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO SOI N : Mortero NORMA : NTP 334.051						
		. Work		FECHA : 01-0				
DIS	EÑO	: Varios	3		ro Huarcaya Gonzales			
gópra	2		Resistencia	a la compresión (Kg/cm	· ·			
CÓDIGO)	3 días	7 días	14 días	28 días			
Muestra	7	169	198	252	282			
Resistencia (Kg/cm2) 250 - 200 - 150 - 150 - 100								
Resistenc 0								
0		5	10	15 20	25 30			

Días

Figura N° 56: Repetición 7 del ensayo de resistencia a la compresión del cemento Sol Fuente: Elaboración Propia

SUAD RICARD		UNIVERSIDAD RICARDO PALMA						
		FACULTAD DE INGENIERÍA						
		LABORATORIO DE ENSAYO DE MATERIALES						
MCMLXIX 80		ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO SO						
DESCRIP	CIÓN	: Morte	ero	NORMA : NTP 334.051				
DICEÑ	^	. Vania		FECHA : 01-03-18				
DISEÑ	U	: Varios	3	HECHO POR: Artur	o Huarcaya Gonzales			
CÓDIGO			Resistencia a	la compresión (Kg/cm2				
CODIGO	3 (lías	7 días	14 días	28 días			
Muestra 8	1	75	203	248	281			
300 250 200 150 100								
50								

Figura N° 57: Repetición 8 del ensayo de resistencia a la compresión del cemento Sol Fuente: Elaboración Propia

Días

DAD RICARO	UNIVERSIDAD RICARDO PALMA						
	FACULTAD DE INGENIERÍ						
Inna MCMI XXX SEE	LABORATORIO DE ENSAYO DE MATERIALE						
DESCRIPCIO		ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO SOI NORMA: NTP 334.051					
DESCRII CI	011		FECHA : 01-03				
DISEÑO	: Va	arios	HECHO POR: Artur				
,		Resistencia a	la compresión (Kg/cm2	-			
CÓDIGO	3 días	7 días	14 días	28 días			
Muestra 9	177	197	251	278			
300 250 200 201 200 200		MUESTF	RA 9				

Figura N° 58: Repetición 9 del ensayo de resistencia a la compresión del cemento Sol Fuente: Elaboración Propia

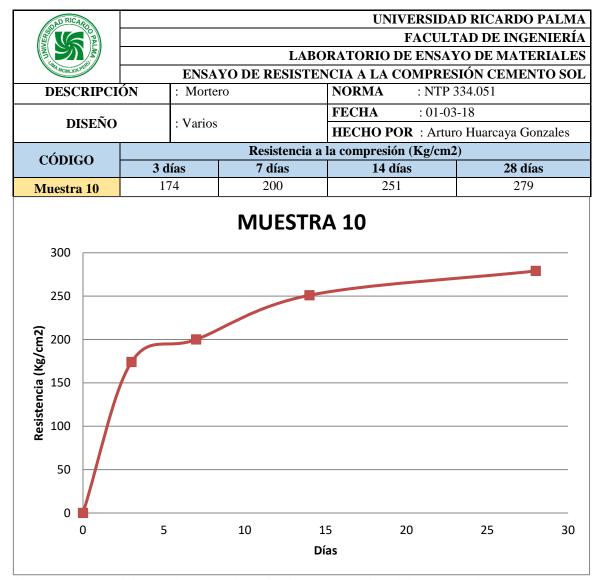

Días

Figura N° 59: Repetición 10 del ensayo de resistencia a la compresión del cemento Sol

Tabla N° 9: Resumen General de resistencia a la compresión del cemento Quisqueya

Tabla N° 9: Resume	n Genera	al de resis	tencia a la compresi	ón del cemento Quisquey	'a			
NINNER SEASON		UNIVERSIDAD RICARDO PALMA						
	FACULTAD DE INGENIERÍA							
			LABO	RATORIO DE ENSAY	O DE MATERIALES			
MA.MCMLXXX.gtc	ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO QUISQUEYA							
DESCRIPCIO	ÓN	: Morte	ro	NORMA : NTP 3	34.051			
~				FECHA : 05-03-	-18			
DISEÑO	: Varios			HECHO POR: Arturo Huarcaya Gonzales				
GÓDIGO		Resistencia a la compresión (Kg/cm2)						
CÓDIGO	3 días		7 días	14 días	28 días			
Muestra 1	140		155	186	226			
Muestra 2	140		162	176	220			
Muestra 3	142		158	178	222			
Muestra 4	139		160	184	226			
Muestra 5	1.	43	157	178	225			
Muestra 6	1.	41	162	175	225			
Muestra 7	1.	45	154	180	224			
Muestra 8	1:	38	158	185	227			
Muestra 9	1-	40	160	180	220			
Muestra 10	1-	40	161	183	230			
prom (kg/cm2)	1	41	159	181	225			

DAD RICAR		UNIVERSIDAD RICARDO PALMA						
	OPAL	FACULTAD DE INGENIE						
	NA NA	LABORATORIO DE ENSAYO DE MATERIAL						
MCMLXIX.PC		ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO QUISQUEYA						
DESCR	RIPCIO	NORMA: NTP 334.051				34.051		
DIO	T NO		X7 ·		FECHA : 05-03-	-18		
DIS	EÑO		: Varios		HECHO POR: Arturo Huarcaya Gonzales			
CÓDIC	0			Resistencia a	la compresión (Kg/cm2			
CODIG	CÓDIGO 3		lías	7 días	14 días	28 días		
Muestra	1	1	40	155	186	226		
250				MUESTF	KA I			
Resistencia (Kg/cm2)								
Re.								

Figura N° 60: Repetición 1 del ensayo de resistencia a la compresión del cemento Quisqueya Fuente: Elaboración Propia

Días

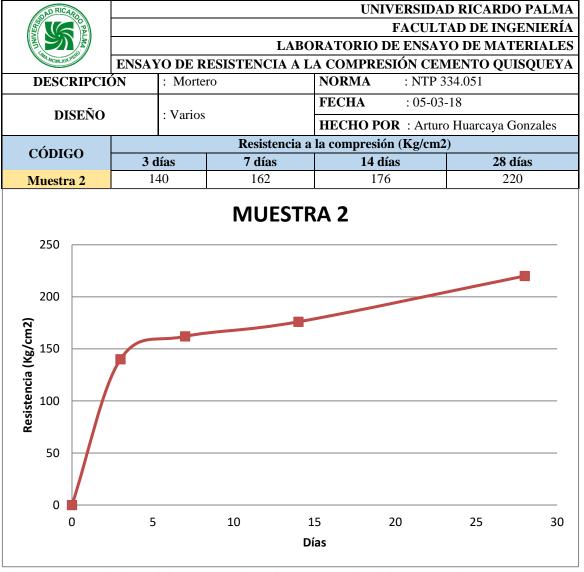


Figura Nº 61: Repetición 2 del ensayo de resistencia a la compresión del cemento Quisqueya

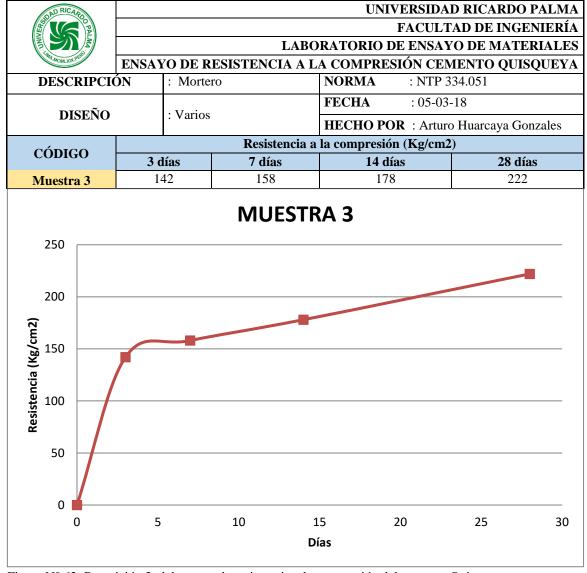


Figura Nº 62: Repetición 3 del ensayo de resistencia a la compresión del cemento Quisqueya

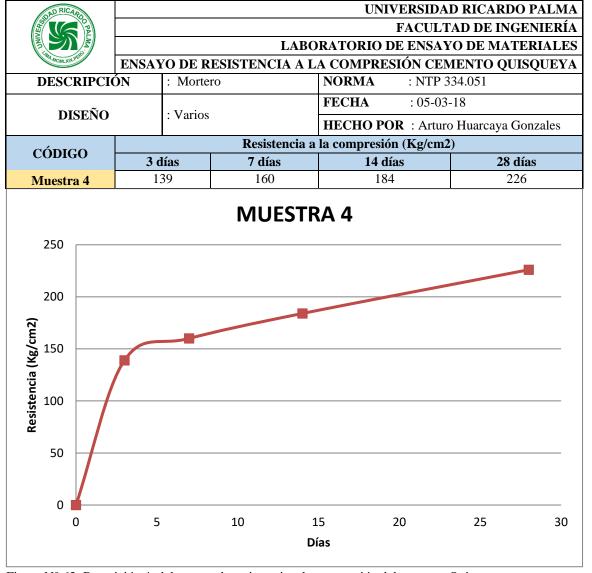


Figura N° 63: Repetición 4 del ensayo de resistencia a la compresión del cemento Quisqueya

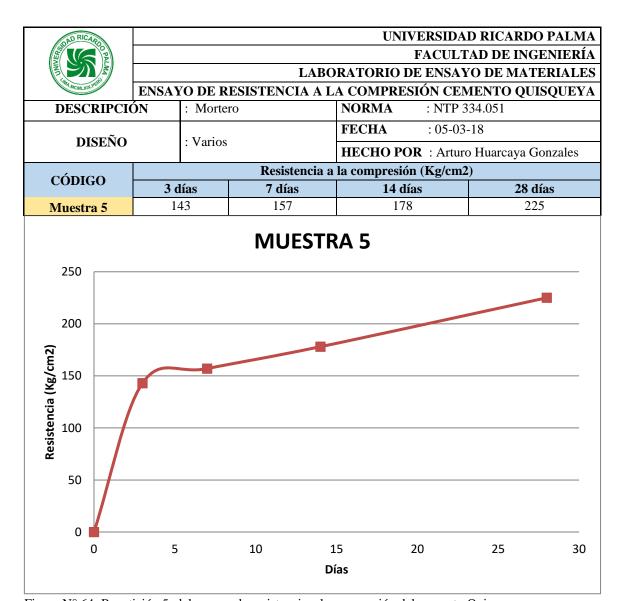


Figura N° 64: Repetición 5 del ensayo de resistencia a la compresión del cemento Quisqueya

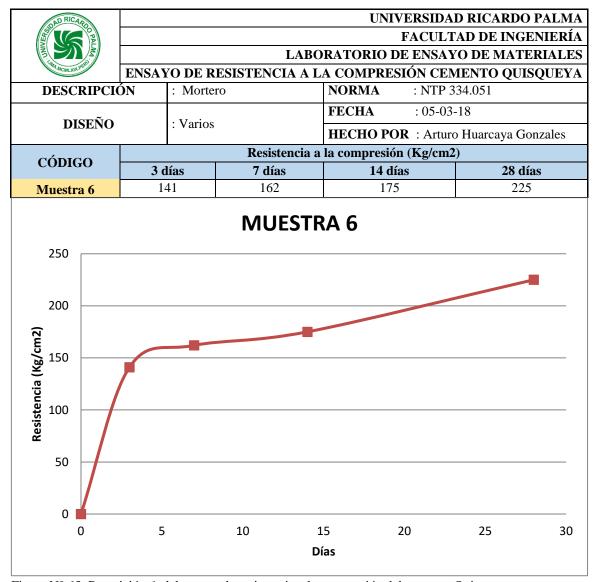


Figura N° 65: Repetición 6 del ensayo de resistencia a la compresión del cemento Quisqueya

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA LABORATORIO DE ENSAYO DE MATERIALES ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO QUISQUEYA **NORMA** : NTP 334.051 DESCRIPCIÓN : Mortero **FECHA** : 05-03-18 : Varios DISEÑO **HECHO POR**: Arturo Huarcaya Gonzales Resistencia a la compresión (Kg/cm2) **CÓDIGO** 3 días 7 días 14 días 28 días 180 145 154 224 Muestra 7 **MUESTRA 7** 250 200 Resistencia (Kg/cm2) 150 100 50 0 5 0 10 15 20 25 30 Días

Figura N° 66: Repetición 7 del ensayo de resistencia a la compresión del cemento Quisqueya

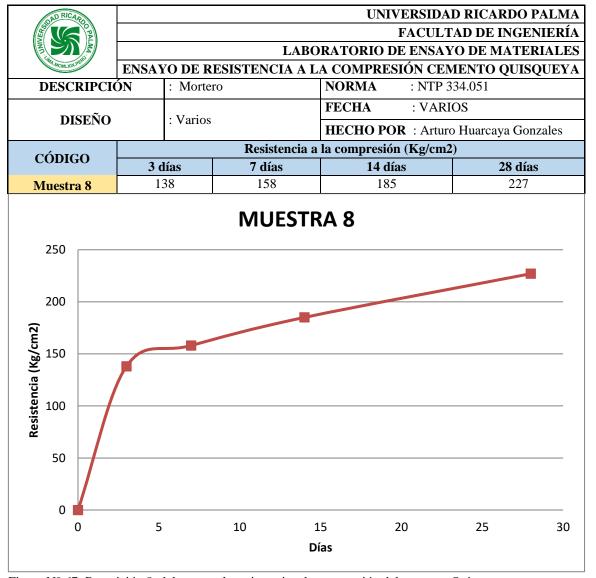


Figura N° 67: Repetición 8 del ensayo de resistencia a la compresión del cemento Quisqueya

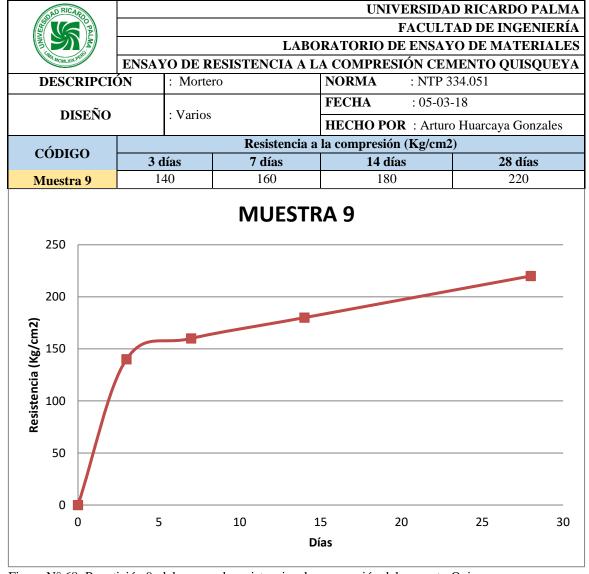


Figura N° 68: Repetición 9 del ensayo de resistencia a la compresión del cemento Quisqueya

SIAD RICARDO					D RICARDO PALMA			
		FACULTAD DE INGENIERÍA						
I IMA MCMLXXX SEZ	ENSAVO	LABORATORIO DE ENSAYO DE MATERIALES ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO QUISQUEYA						
DESCRIPO								
			FECH	IA : 05-03	-18			
DISEÑO) : V	varios	HECI	HO POR : Arturo	o Huarcaya Gonzales			
a, 4 – - a, a		Resiste		presión (Kg/cm²	•			
CÓDIGO	3 días	7 días		14 días	28 días			
Muestra 10	140	161		183	230			
250 200								
100 Resistenc	5	10	15	20	25 30			

Figura N° 69: Repetición 10 del ensayo de resistencia a la compresión del cemento Quisqueya Fuente: Elaboración Propia

Días

Tabla N° 10: Resumen General de resistencia a la compresión del cemento Pacasmayo

Tabla N° 10: Resume	en General de res	istencia a la compre	sión del cemento Pacasm	ayo			
OAD RICARA	UNIVERSIDAD RICARDO PALMA						
	FACULTAD DE INGENIERÍA						
		LABO	DRATORIO DE ENSAY	O DE MATERIALES			
CMA.MCMLXXX.8EE	J	ENSAYO DE RESI	ISTENCIA A LA COMI	PRESIÓN CEMENTO			
				PACASMAYO			
DESCRIPCIÓ	: Morte	ero	NORMA : NTP 3	34.051			
DISEÑO : Varios FECHA : 07-03-18 HECHO POR : Arturo Huac			-18				
			HECHO POR: Arturo Huacaya Gonzales				
aézza a	Resistencia a la compresión (Kg/cm2)						
CÓDIGO	3 días	7 días	14 días	28 días			
Muestra 1	126	135	145	186			
Muestra 2	130	137	145	182			
Muestra 3	127	136	146	181			
Muestra 4	131	139	148	189			
Muestra 5	129	137	146	187			
Muestra 6	130	138	150	185			
Muestra 7	127	135	149	188			
Muestra 8	128	138	147	188			
Muestra 9	126	140	147	188			
Muestra 10	129	137	146	188			
Prom. (kg/cm2)	128	137	147	186			

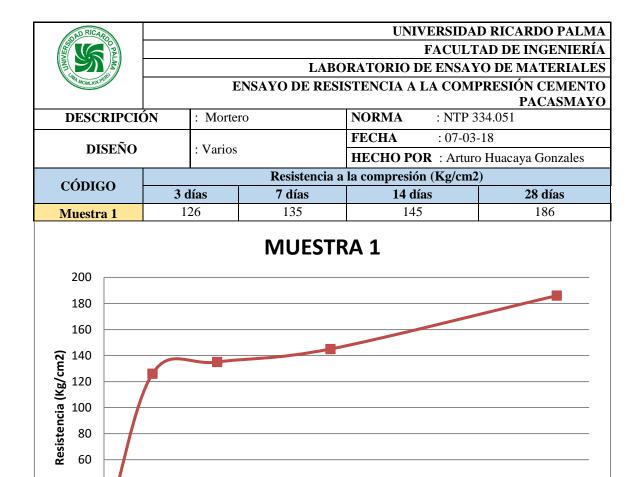


Figura N° 70: Repetición 1 del ensayo de resistencia a la compresión del cemento Pacasmayo Fuente: Elaboración Propia

Días

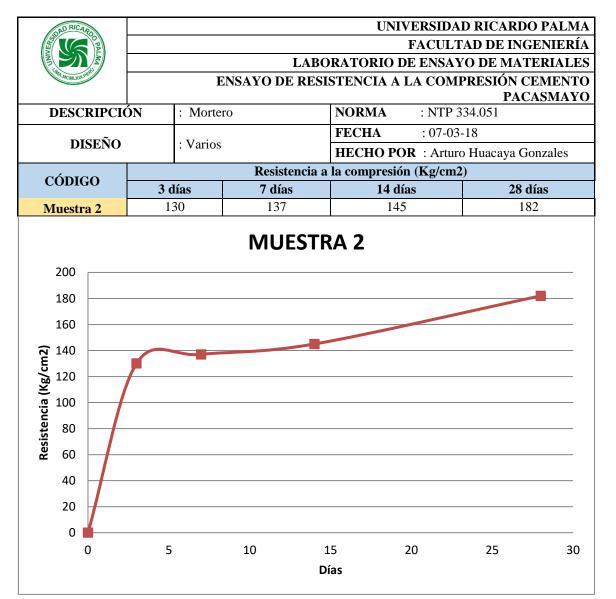


Figura N° 71: Repetición 2 del ensayo de resistencia a la compresión del cemento Pacasmayo

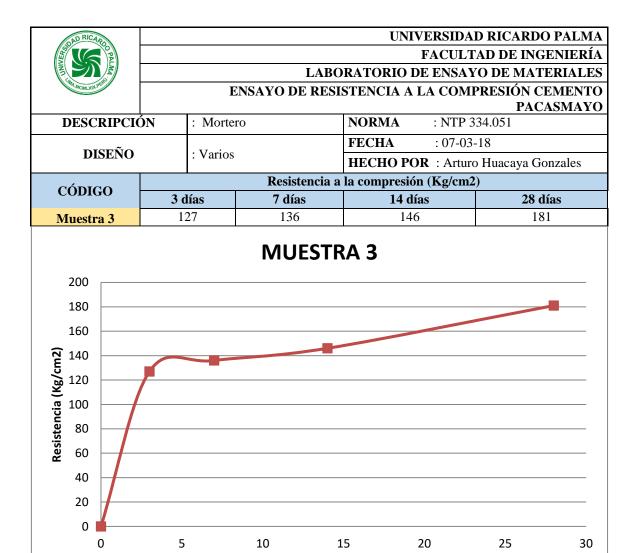


Figura N° 72: Repetición 3 del ensayo de resistencia a la compresión del cemento Pacasmayo

Días

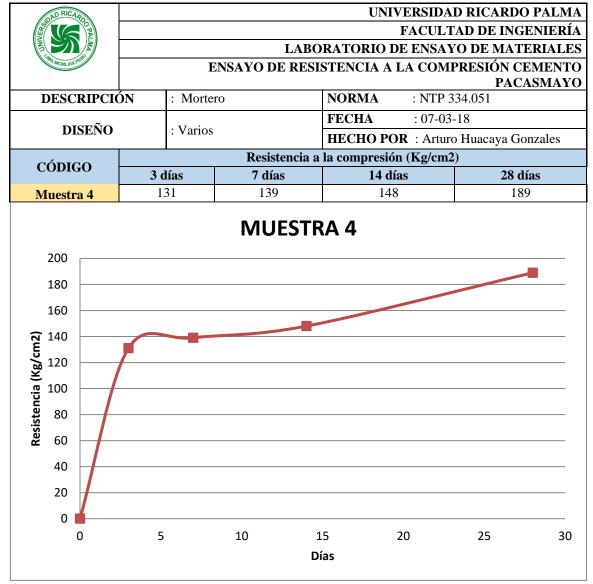


Figura N° 73: Repetición 4 del ensayo de resistencia a la compresión del cemento Pacasmayo

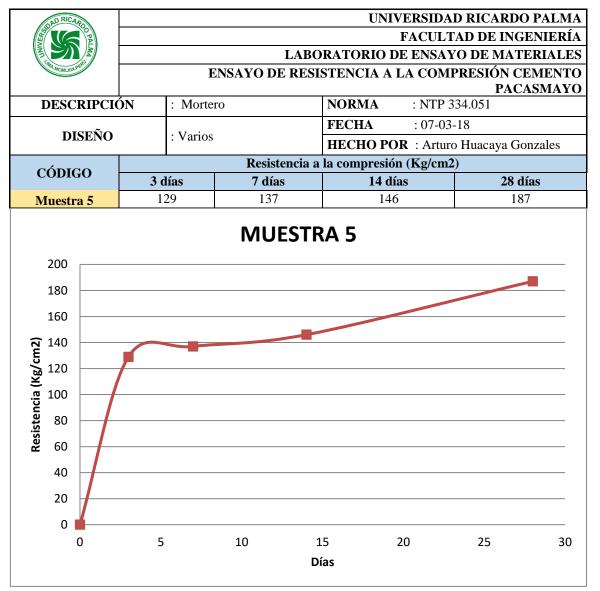


Figura N° 74: Repetición 5 del ensayo de resistencia a la compresión del cemento Pacasmayo

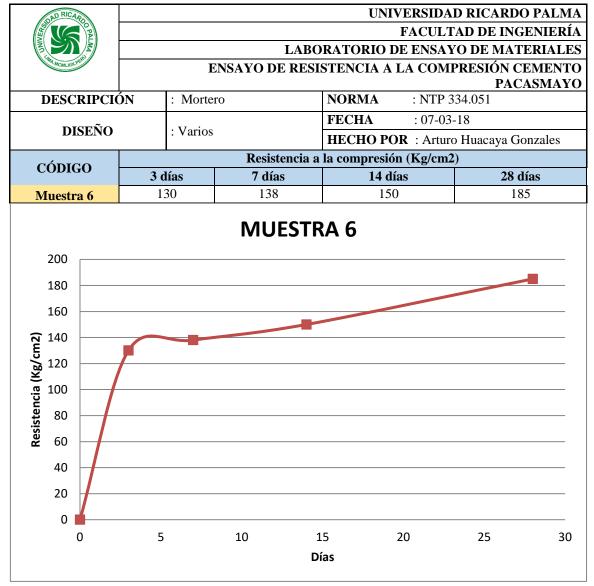


Figura N° 75: Repetición 6 del ensayo de resistencia a la compresión del cemento Pacasmayo

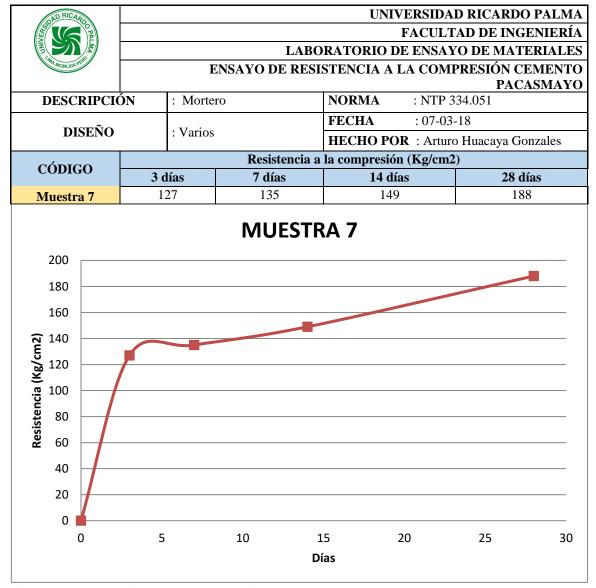


Figura N° 76: Repetición 7 del ensayo de resistencia a la compresión del cemento Pacasmayo

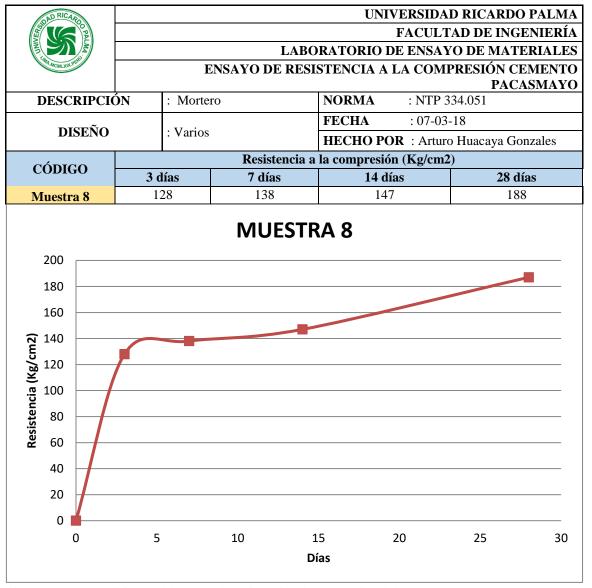


Figura N° 77: Repetición 8 del ensayo de resistencia a la compresión del cemento Pacasmayo

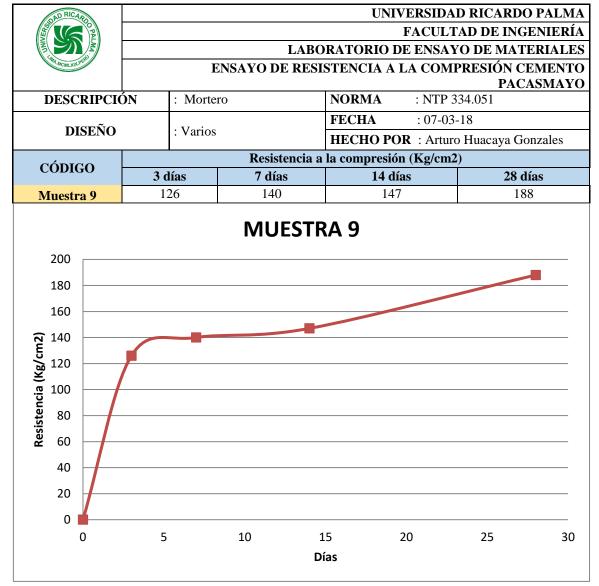


Figura N° 78: Repetición 9 del ensayo de resistencia a la compresión del cemento Pacasmayo

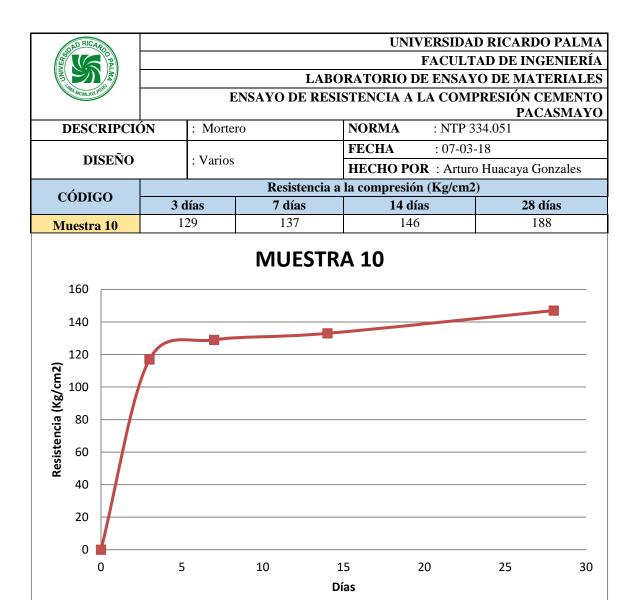


Figura Nº 79: Repetición 10 del ensayo de resistencia a la compresión del cemento Pacasmayo

Tabla N° 11: Resumen General de resistencia a la compresión del cemento Andino

Tabla N° 11: Resun	nen Gener	ral de res	istencia a la compres	sión del cemento Andino			
OAD RICARD	UNIVERSIDAD RICARDO PALMA						
				FACULT	AD DE INGENIERÍA		
			LABO	RATORIO DE ENSAY	O DE MATERIALES		
MA.MCMLXXX.9EE	EN	ISAYO I	DE RESISTENCIA	A LA COMPRESIÓN	CEMENTO ANDINO		
DESCRIPCIO	ÓN	: Morte	ro	NORMA : NTP 3	34.051		
D. C. T. C.				FECHA : 07-03-	-18		
DISEÑO		: Varios		HECHO POR: Arturo Huacaya Gonzales			
CÓDIGO		Resistencia a la compresión (Kg/cm2)					
CODIGO	3 d	ías	7 días	14 días	28 días		
Muestra 1	11	17	124	130	143		
Muestra 2	11	14	125	137	145		
Muestra 3	11	11	123	132	146		
Muestra 4	11	13	125	134	150		
Muestra 5	11	18	127	133	145		
Muestra 6	11	14	126	136	150		
Muestra 7	115		128	133	143		
Muestra 8	114		127	131	145		
Muestra 9	11	16	130	134	148		
Muestra 10	11	17	129	133	147		
prom (kg/cm2)	11	15	126	133	146		

là	DAD RICARD		UNIVERSIDAD RICARDO PALMA					
NIVER		PALM	FACULTAD DE INGENIERÍA LABORATORIO DE ENSAYO DE MATERIALES					
	MA. MCMLXIX PERI		E	NSAYO I				CEMENTO ANDINO
I	DESCR	IPCIÓ		: Morte		NORMA	: NTP 3	
	DIC	EÑO		: Varios		FECHA	: 07-03-	-18
	D18	ENU		. varios				Huacaya Gonzales
C	ÓDIGO	,				la compresión	_	
				lías	7 días	14 dí		28 días
M	luestra	1	1	17	124	130)	143
Resistencia (Kg/cm2)	160							

Días

Figura N° 80: Repetición 1~ del ensayo de resistencia a la compresión del cemento Andino

Fuente: Elaboración Propia

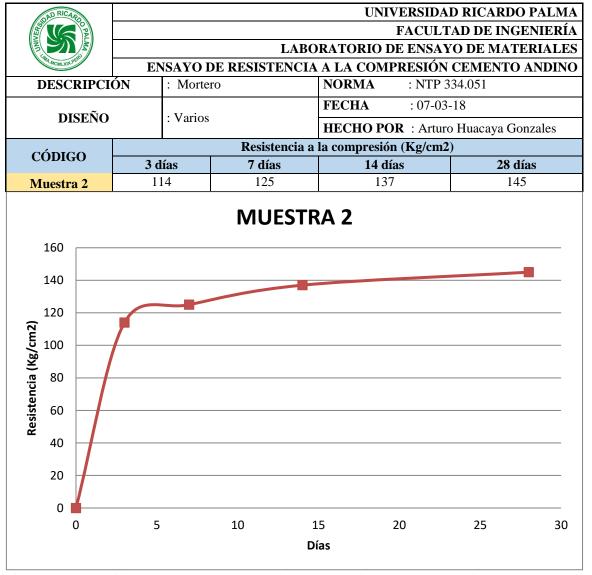


Figura Nº 81: Repetición 2 del ensayo de resistencia a la compresión del cemento Andino

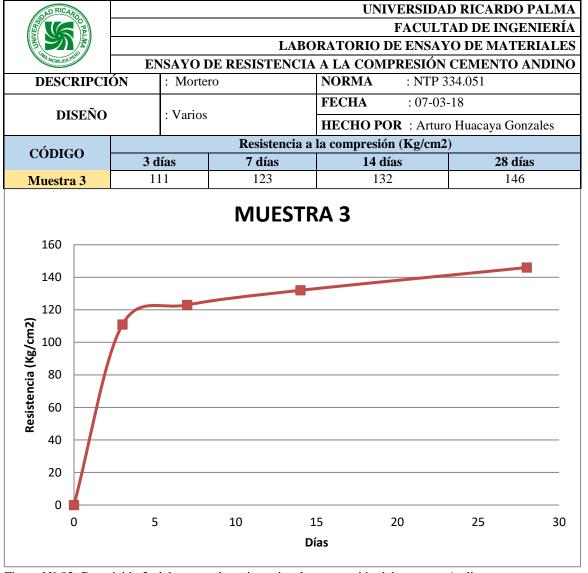


Figura N° 82: Repetición 3 del ensayo de resistencia a la compresión del cemento Andino

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA LABORATORIO DE ENSAYO DE MATERIALES ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO ANDINO **NORMA** : NTP 334.051 DESCRIPCIÓN : Mortero FECHA : 07-03-18 DISEÑO : Varios **HECHO POR**: Arturo Huacaya Gonzales Resistencia a la compresión (Kg/cm2) **CÓDIGO** 3 días 7 días 14 días 28 días 134 113 125 150 Muestra 4 **MUESTRA 4** 160 140 120 Resistencia (Kg/cm2) 100 80 60 40 20 0 5 0 10 15 20 25 30 Días

Figura N° 83: Repetición 4 del ensayo de resistencia a la compresión del cemento Andino

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA LABORATORIO DE ENSAYO DE MATERIALES ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO ANDINO **NORMA** : NTP 334.051 DESCRIPCIÓN : Mortero FECHA : 07-03-18 DISEÑO : Varios **HECHO POR**: Arturo Huacaya Gonzales Resistencia a la compresión (Kg/cm2) **CÓDIGO** 3 días 7 días 14 días 28 días 133 118 127 145 Muestra 5 **MUESTRA 5** 160 140 120 Resistencia (Kg/cm2) 100 80 60 40 20 0 5 0 10 15 20 25 30 Días

Figura N° 84: Repetición 5 del ensayo de resistencia a la compresión del cemento Andino

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA LABORATORIO DE ENSAYO DE MATERIALES ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO ANDINO **NORMA** : NTP 334.051 DESCRIPCIÓN : Mortero FECHA : 07-03-18 DISEÑO : Varios **HECHO POR**: Arturo Huacaya Gonzales Resistencia a la compresión (Kg/cm2) **CÓDIGO** 3 días 7 días 14 días 28 días 114 126 136 150 Muestra 6 **MUESTRA 6** 160 140 120 Resistencia (Kg/cm2) 100 80 60 40 20 0 5 0 10 15 20 25 30 Días

Figura N° 85: Repetición 6 del ensayo de resistencia a la compresión del cemento Andino

SAD RICARD	UNIVERSIDAD RICARDO PALMA				
	FACULTAD DE INGENIERÍA				
- CHIMA MCML SOL STEPS	ENGAVO		SORATORIO DE ENSAY IA A LA COMPRESIÓN		
DESCRIPC			NORMA : NTP 3		
			FECHA : 07-03-		
DISEÑO	: Varios	5	HECHO POR : Arturo		
gázza a		Resistencia	a la compresión (Kg/cm2	•	
CÓDIGO	3 días	7 días	14 días	28 días	
Muestra 7	115	128	133	143	
160					

Días

Figura N° 86: Repetición 7 del ensayo de resistencia a la compresión del cemento Andino Fuente: Elaboración Propia

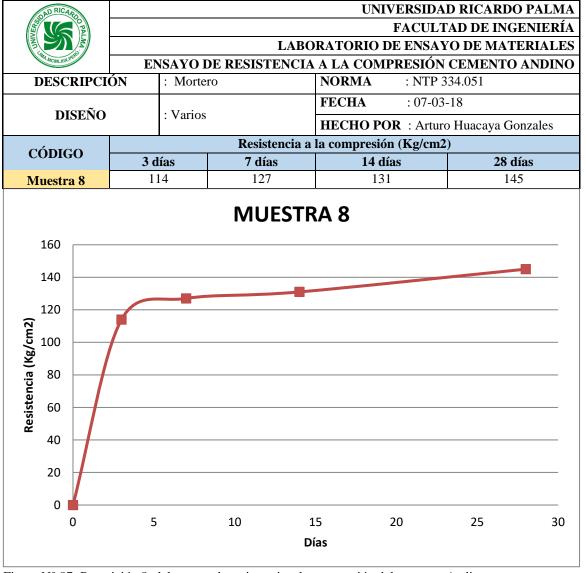


Figura N° 87: Repetición 8 del ensayo de resistencia a la compresión del cemento Andino

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA LABORATORIO DE ENSAYO DE MATERIALES ENSAYO DE RESISTENCIA A LA COMPRESIÓN CEMENTO ANDINO **NORMA** : NTP 334.051 DESCRIPCIÓN : Mortero FECHA : 07-03-18 DISEÑO : Varios **HECHO POR**: Arturo Huacaya Gonzales Resistencia a la compresión (Kg/cm2) **CÓDIGO** 3 días 7 días 14 días 28 días 134 116 130 148 Muestra 9 **MUESTRA 9** 160 140 120 Resistencia (Kg/cm2) 100 80 60 40 20 0 5 0 10 15 20 25 30 Días

Figura N° 88: Repetición 9 del ensayo de resistencia a la compresión del cemento Andino

SOAD RICARDO				UNIVERSIDA		
AND SOME SOME SOME SOME SOME SOME SOME SOME		T	ARORATO	FACULT RIO DE ENSAY	AD DE ING	
CIMA MCMLXXX SEE	ENSAYO			COMPRESIÓN		
DESCRIPCIO	CIÓN : Mortero NORMA : NTP 334.051					
DISEÑO	: Varios	2	FECH	IA : 07-03	-18	
DISENO	: varios	S	HECI	HO POR: Arturo	o Huacaya Go	nzales
CÓDIGO		1	cia a la com	presión (Kg/cm2		
	3 días	7 días		14 días	28 d	
Muestra 10	117	129		133	14'	7
Resistencia (Kg/cm2) 140 140 140 0 0 0 0 0	5	10	15 Días	20	25	30

Figura N° 89: Repetición 10 del ensayo de resistencia a la compresión del cemento Andino Fuente: Elaboración Propia

_		UN	NIVERSIDAD RIC	CARDO PALMA			
QAD RICARDO		FACULTAD DE INGENIERÍA					
	L	ABORATORIC	DE ENSAYO DE	MATERIALES			
MA. MCMLXIX Sec	ENSAYO DE RI	ESISTENCIA A	LA COMPRESIO	ÓN PROMEDIO			
DESCRIPCIÓN	: Mortero		NORMA	: NTP 339.034			
				: 07-03-18			
DISEÑO	: Varios		HECHO POR				
DEGCRIPCIÓN	a Péra	= DÍAG	HUARCAYA G				
DESCRIPCIÓN	3 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS			
Cemento Sol	174	201	250	278			
Cemento Quisqueya	141	159	181	225			
Cemento Pacasmayo	128	137	147	186			
Cemento Andino	115	126	133	146			
Sesistencia (kg/cm2) 250 Resistencia (kg/cm3) 50 50	*			* C_Sol≜ C_Quisqueyae C_Pacasmayoe C_Andino			
——————————————————————————————————————	14	21	28				
0 7	14	21					

Figura N° 90: Resultado promedio del ensayo de resistencia a la compresión de los cuatro cementos Fuente: Elaboración Propia

4.2 Contrastación de hipótesis

4.2.1 Contrastación de la primera hipótesis

HIPOTESIS 1: Análisis estadístico de los tiempos iniciales y finales de fraguado en función a las muestras de cada cemento utilizado

En la Tabla N° 12 se muestra la variación de los tiempos iniciales y finales de fraguado en función a las muestras ensayadas de cada cemento utilizado.

Tabla N° 12: Resultados de los tiempos iniciales y finales de fraguados

	CEMEN	TO SOL	CEMENTO F	PACASMAYO	CEMENTO (QUISQUEYA	CEMENTO	ANDINO
MUESTRA	TI	TF	TI	TF	TI	TF	TI	TF
1	138	225	164	225	132	180	141	195
2	136	240	166	225	129	180	141	210
3	138	240	166	240	136	195	140	210
4	137	240	172	225	133	180	143	195
5	140	240	168	225	137	180	143	195
6	141	240	165	225	135	195	144	195
7	137	240	161	240	132	180	139	210
8	140	240	164	225	135	180	140	195
9	142	225	164	225	136	180	141	195
10	139	240	163	240	132	180	143	195

Fuente: Elaboración propia

Para analizar la variación de los tiempos iniciales y finales de fraguado en función de las muestras de los diferentes cementos utilizados tales como: Sol, Pacasmayo, Quisqueya y Andino se usará el método de regresión para evaluar si conforme variamos el cemento con las diferentes muestras, el tiempo inicial y final de fraguado aumenta o reduce. Los resultados estadísticos descriptivos de cada diseño obtenido en el programa SPSS V22 se muestran en las tablas N° 13, 14, 15 y 16 y en las figuras N° 91, 92, 93 y 94 se observa los histogramas de Frecuencia.

Tabla N° 13: Resultados estadísticos de tiempo inicial y final de fraguado del cemento Sol

-	7/ /	
Esta	dísticos	

		T.inicial_S	T.final S
			_
N	Válido	10	10
	Perdidos	0	0
Media		138,80	237,00
Mediana		138,50	240,00
Moda		137ª	240
Desviación estándar		1,932	6,325
Asimetría	ı	,236	-1,779
Error está	indar de asimetría	,687	,687
Curtosis		-,961	1,406
Error está	indar de curtosis	1,334	1,334
Rango		6	15
Percentile	es 25	137,00	236,25
	75	140,25	240,00

a. Existen múltiples modos. Se muestra el valor más pequeño.

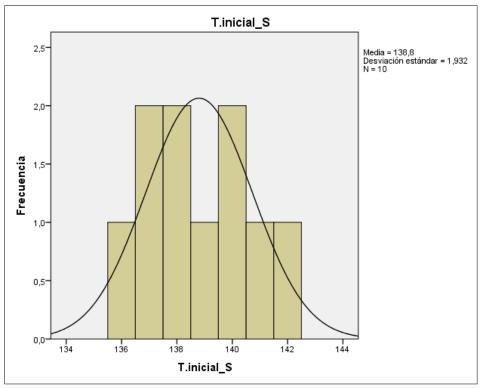


Figura N° 91: Histograma de frecuencia tiempo inicial de fraguado del cemento sol Fuente: Elaboración Propia

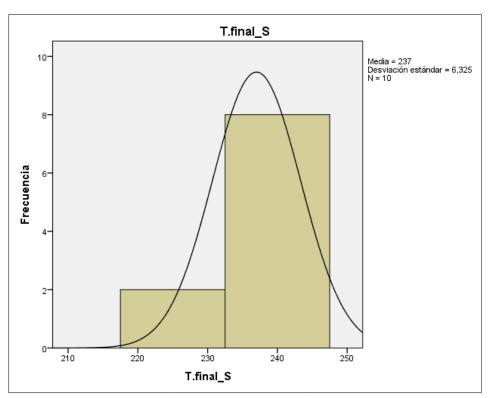


Figura N° 92: Histograma de frecuencia tiempo final de fraguado del cemento sol Fuente: Elaboración Propia

Tabla N° 14: Resultados estadísticos de tiempo inicial y final de fraguado del cemento Pacasmayo

Estadísticos

		T.inicial_P	T.final_P
N	Válido	10	10
	Perdidos	0	0
Media		165,30	229,50
Mediana		164,50	225,00
Moda		164	225
Desviació	n estándar	3,020	7,246
Asimetría		1,123	1,035
Error estái	ndar de asimetría	,687	,687
Curtosis		2,079	-1,224
Error estái	ndar de curtosis	1,334	1,334
Rango		11	15
Percentile	s 25	163,75	225,00
	75	166,50	240,00

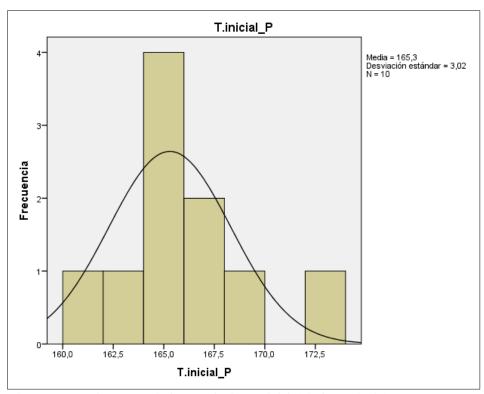


Figura N° 93: Histograma de frecuencia tiempo inicial de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

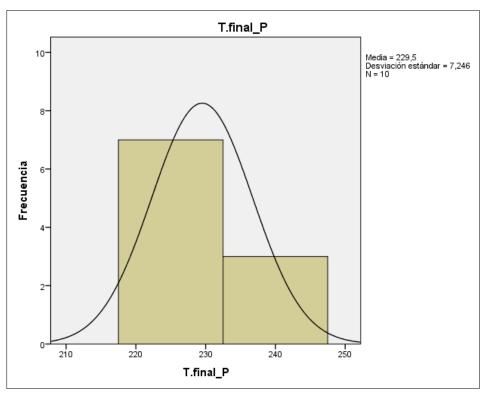


Figura N° 94: Histograma de frecuencia tiempo final de fraguado del cemento Pacasmayo Fuente: Elaboración Propia

Tabla N° 15: Resultados estadísticos de tiempo inicial y final de fraguado del cemento Quisqueya

_		_
Fete	díci	ticne

		T.inicial_Q	T.final_Q
N	Válido	10	10
	Perdidos	0	0
Media		133,70	183,00
Mediana		134,00	180,00
Moda		132	180
Desviación	estándar	2,497	6,325
Asimetría		-,484	1,779
Error estáno	dar de asimetría	,687	,687
Curtosis		-,444	1,406
Error estáno	dar de curtosis	1,334	1,334
Rango		8	15
Percentiles	25	132,00	180,00
	75	136,00	183,75

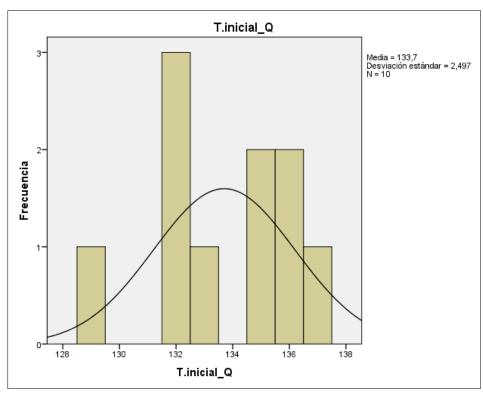


Figura N° 95: Histograma de frecuencia tiempo inicial de fraguado del cemento Quisqueya Fuente: Elaboración Propia

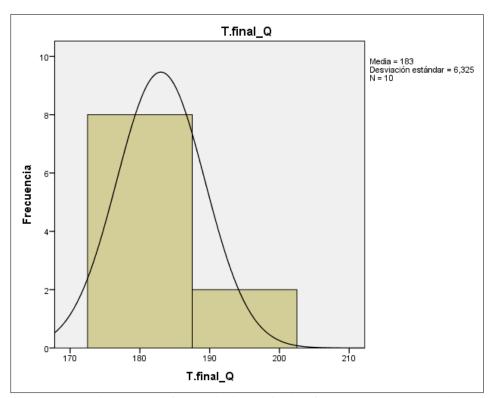


Figura N° 96: Histograma de frecuencia tiempo final de fraguado del cemento Quisqueya Fuente: Elaboración Propia

Tabla N° 16: Resultados estadísticos de tiempo inicial y final de fraguado del cemento Andino

Estadísticos					
		T.inicial_A	T.final_A		
N	Válido	10	10		
	Perdidos	0	0		
Media		141,50	199,50		
Mediana		141,00	195,00		
Moda		141ª	195		
Desviacio	ón estándar	1,650	7,246		
Asimetría	a	,093	1,035		
Error esta	ándar de asimetría	,687	,687		
Curtosis		-1,287	-1,224		
Error esta	ándar de curtosis	1,334	1,334		
Rango		5	15		
Percentile	es 25	140,00	195,00		
	75	143,00	210,00		

a. Existen múltiples modos. Se muestra el valor más pequeño.

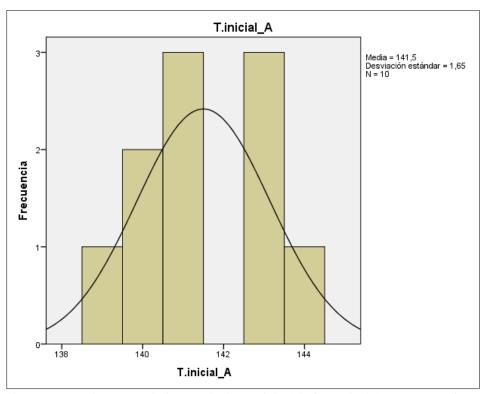


Figura N° 97: Histograma de frecuencia tiempo inical de fraguado del cemento Andino Fuente: Elaboración Propia

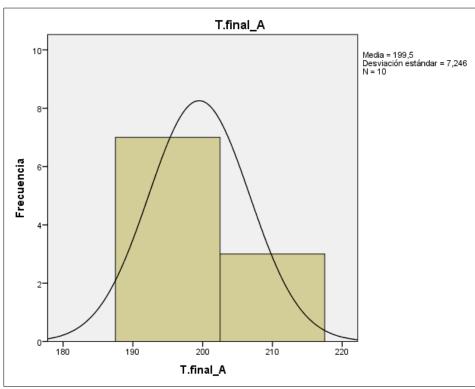


Figura N° 98: Histograma de frecuencia tiempo final de fraguado del cemento Andino Fuente: Elaboración Propia

H_0 :

Al variar los diferentes cementos pórtland Tipo I no se reducen su trabajabilidad en el tiempo.

H_1 :

Al variar los diferentes cementos pórtland Tipo I se reducen su trabajabilidad en el tiempo.

Se considera un nivel de significación $\alpha = 0.05$.

Análisis estadístico:

Para la evaluación de la hipótesis se usó la regresión de análisis de datos con el programa SPSS V22 el cual predijo la recta de regresión y obtuvo los resultados mostrados en las tablas N° 17, 18,19 y 20.

Tabla N° 17: Coeficientes de la recta de regresión para el cemento Sol

Coeficientes^a

		Coeficientes no	estandarizados	Coeficientes estandarizados		
1	Modelo	В	Error estándar	Beta	t	Sig.
	1 (Constante)	136,733	1,132		120,832	,000
	T.Muestra	,376	,182	,589	2,060	,073

a. Variable dependiente: T.inicial_S

Fuente: Elaboración propia

Tabla Nº 18: Coeficientes de la recta de regresión para el cemento Pacasmayo

Coef	ïcie	ntesª

				Coeficientes			
		Coeficientes no estandarizados		estandarizados			
Modelo		В	Error estándar	Beta	t	Sig.	
1	(Constante)	167,600	1,987		84,355	,000	
	T.Muestra	-,418	,320	-,419	-1,306	,228	

a. Variable dependiente: T.inicial_P

Tabla N° 19: Coeficientes de la recta de regresión para el cemento Quisqueya

Coeficientes^a

		Coeficientes no	estandarizados	Coeficientes estandarizados		
Modelo		В	Error estándar	Beta	t	Sig.
1	(Constante)	132,400	1,733		76,395	,000
	T.Muestra	,236	,279	,287	,846	,422

a. Variable dependiente: T.inicial_Q

Fuente: Elaboración propia

Tabla N° 20: Coeficientes de la recta de regresión para el cemento Andino

Coeficientes^a

Ī		Coeficientes no	estandarizados	Coeficientes estandarizados		
	Modelo	В	Error estándar	Beta	t	Sig.
	1 (Constante)	141,267	1,192		118,527	,000
L	T.Muestra	,042	,192	,078	,221	,831

a. Variable dependiente: T.inicial_A

Fuente: Elaboración propia

Con los coeficientes de correlación se mide la correlación lineal es decir la función que mejor se aproxima a la nube de puntos, puede ser lineal, de segundo grado, de tercer grado, logarítmica, exponencial, etc.

En estadística la regresión lineal o ajuste lineal es un método matemática que modela la relación entre una variable dependiente "Y" y las variables independiente "X". La recta de regresión de "Y" sobre "X" se utiliza para estimar los valores de "Y" a partir de los valores de "X".

Este modelo se expresa como:

$$Y = a + bx$$

Donde:

Y = Tiempo inicial de fraguado de cada cemento(porcentaje)

X = Número de ensayos respecto a la marca de cemento de Tipo I

a = Constante (intersección absicas)

b = Pendiente de la recta

Con los resultados expresados en las tablas N° 17, 18,19 y 20 se forma las siguientes funciones de regresión lineal con el Lavado de finos respecto al número de ensayos respecto al diseño de mezcla para cada relación agua/cemento respectivamente.

Para cemento Sol Tipo I:

$$y = 0.38x + 136.7$$

Para cemento Pacasmayo Tipo I:

$$y = -0.42x + 167.6$$

Para cemento Quisqueya Tipo I:

$$y = 0.24x + 132.4$$

Para cemento Andino Tipo I:

$$y = 0.042x + 141.3$$

En las siguientes figuras N° 99, 100, 101, 102 se muestran las rectas de regresión de los tiempos iniciales de fraguado de cada marca de cemento Tipo I según el número de ensayos.

La siguiente recta nos permite decir que nuestros modelos son efectivos dentro del rango de análisis de X desde el ensayo 1 hasta el ensayo 10.

Figura N° 99: Regresión Lineal cemento Sol Fuente: Elaboración Propia

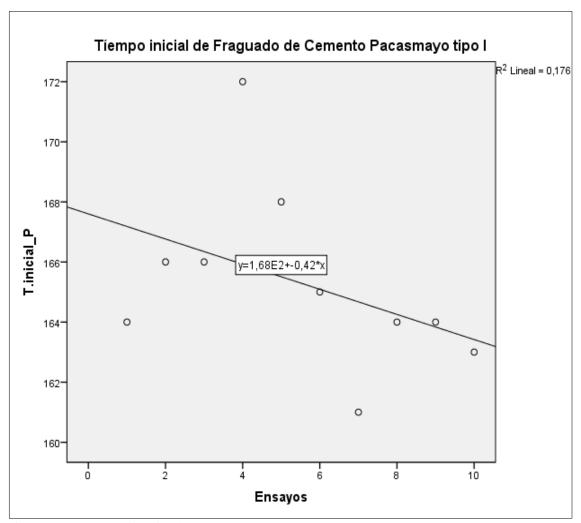


Figura N° 100: Regresión Lineal cemento Pacasmayo Fuente: Elaboración Propia

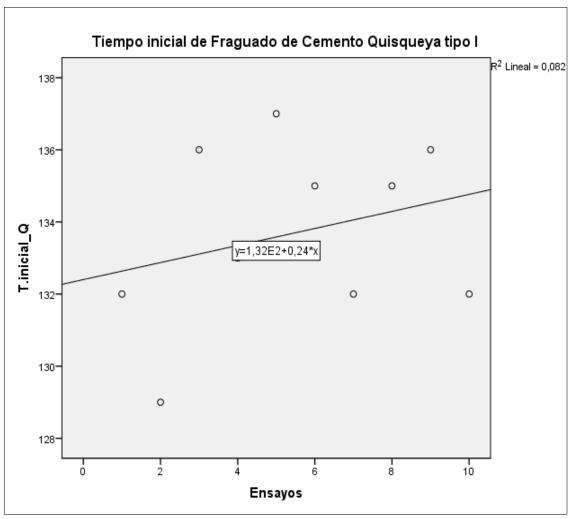


Figura N° 101: Regresión Lineal cemento Quisqueya Fuente: Elaboración Propia

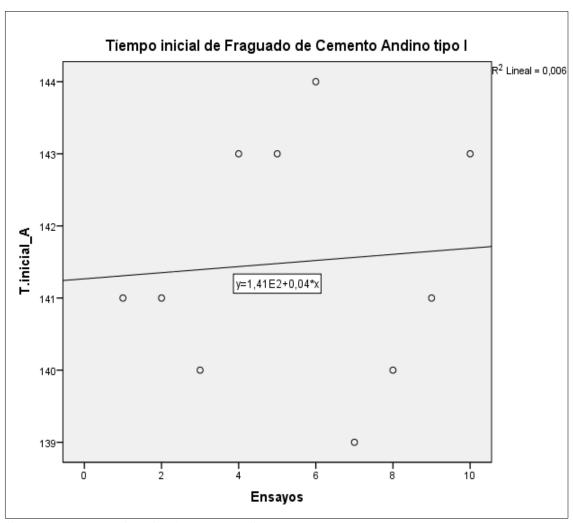


Figura N° 102: Regresión Lineal cemento Andino

Coeficiente de determinación múltiple (R²)

En el contexto de un modelo estadístico cuyo principal propósito es probar una hipótesis. El coeficiente determina la calidad del modelo para replicar los resultados y la proporción de la variación de los resultados que pueda explicarse por el modelo. En este caso el R² es el cuadrado del coeficiente de correlación de Pearson, los cuales son solo para la regresión lineal. Por medio del uso del programa SPSS V22 se obtuvo los resultados mostrados por cada cemento pórtland Tipo I en las tablas N° 21,22,23,24.

Tabla N° 21: Resumen del modelo -cemento Sol

			R cuadrado	Error estándar
Modelo	R	R cuadrado	ajustado	de la estimación
1	,589ª	,347	,265	1,656

a. Predictores: (Constante), T.Muestra

Fuente: Elaboración Propia

Tabla N° 22: Resumen del model-cemento Pacasmayo

Modelo	R	R cuadrado	R cuadrado ajustado	Error estándar de la estimación
1	,419ª	,176	,073	2,908

a. Predictores: (Constante), T.Muestra

Fuente: Elaboración Propia

Tabla N° 23: Resumen del modelo- cemento Quisqueya

Modelo	R	R cuadrado	R cuadrado	Error estándar de la estimación
1	,287ª	,082	-,033	2,537

a. Predictores: (Constante), T.Muestra

Fuente: Elaboración Propia

Tabla N° 24: Resumen del modelo-cemento Andino

			R cuadrado	Error estándar
Modelo	R	R cuadrado	ajustado	de la estimación
1	,078ª	,006	-,118	1,745

a. Predictores: (Constante), T.Muestra

Fuente: Elaboración Propia

Se tiene 4 resultados de r^2 debido a que existen 4 diferentes marcas de cemento Tipo I (Sol, Pacasmayo ,Quisqueya , Andino) y con diferentes ensayos de tiempo inicial de fraguado.

$$R^2_{sol} = 0.347 \quad R^2_{Pacasmayo} = 0.176 \quad R^2_{Qusqueya} = 0.082 \qquad \qquad R^2_{Andino} = 0.006 \label{eq:R2pacasmayo}$$

El resultado del r^2 expresa que la variable independiente (el número de ensayos para cada cemento) influye un 34.7% ,17.6%, 8.2% y 0.6%; respecto a la variable dependiente (tiempo inicial de fraguado).

Conclusión

Se puede observar en los gráficos de regresión lineal que tiene una pendiente positiva a excepción del cemento Pacasmayo. Nuestro coeficiente de determinación múltiple r2 aun teniendo valores menores a 1 va disminuyendo conforme se va cambiando la marca de cemento pórtland. Usando ese método de regresión lineal se concluye que se rechaza la hipótesis nula (H_0) y se acepta la hipótesis alterna (H_1) ya que al variar los diferentes cementos pórtland Tipo I se reducen sus tiempos de fraguado por lo tanto reduce su trabajabilidad .

4.2.2 Contrastación de la segunda hipótesis

HIPOTESIS 2: Análisis estadístico de la variación de la resistencia a la compresión de los distintos cementos Tipo I en función a la finura (%) de cada cemento.

Para el análisis estadístico de esta hipótesis se analizará los ensayos de resistencia a la compresión a 28 días ya que es el día donde el mortero obtiene su máxima resistencia.

Se tiene que por cada cemento se consideraron 3 ensayos de resistencia a la compresión (la más baja , la más alta y el promedio), como se tienen 4 diferentes marcas de cemento Tipo I, existirán 12 de resistencia a la compresión ensayos por cada porcentaje de finura.

En la tabla N° 25 se puede observar la variación de la resistencia en función al procentaje de finura.

Tabla N° 25: Resultado de resistencia a la compresión a 28 días en función al porcentaje de finura

Cemento	Resistencia a la compresión a los 28 días (Kg/cm2)	Finura (%)
	274	94.00
Sol	278	94.67
	282	95.00
	181	92.30
Pacasmayo	186	92.57
	189	93.00
	220	92.80
Quisqueya	225	93.27
	230	93.60
	143	89.00
Andino	146	89.73
	150	90.40

Fuente: Elaboración Propia

Para analizar la variación de la resistencia a la compresión en función al porcentaje de finura de cada cemento Tipo I se usará el método de regresión

para evaluar si conforme varía el porcentaje de finura la resistencia a la compresión aumenta. Los resultados estadísticos descriptivos para las 10 muestras de resistencias a los 28 días para cada cemento Tipo I y los porcentajes de finura analizados en el programa SPSS V22 se muestran en la tablas N° 27, 28, 29,30 y en las figuras N° 103, 104, 105, 106 se observa los histogramas de Frecuencia.

Tabla N° 26: Resumen de muestras de resistencia a los 28 días y porcentaje de finura

R_Cem _Sol (kg/cm2	Finura _Sol (%)	R_Cem_Qui squeya (kg/cm2)	Finura_Qui squeya (%)	R_Cem_Paca smayo (kg/cm2)	Finura_Paca smayo (%)	R_Cem_A ndino (kg/cm2)	Finura_ Andino (%)
277	94	226	93.6	186	93	143	90.4
278	95	220	93.4	182	92.4	145	89
278	95	222	92.8	181	92.3	146	89.8
280		226		189		150	
277		225		187		145	
274		225		185		150	
282		224		188		143	
281		227		187		145	
278		220		188		148	
279		230		188		147	

Fuente: Elaboración Propia

Tabla N° 27: Resultados Estadísticos para cemento Sol

Estadísticos R_Cem_Sol Finura_Sol N Válido 10 3 0 0 Perdidos 278,40 94,6667 Media Error estándar de la media ,33333 ,718 278,00 95,0000 Mediana 95,00 Moda 278 Desviación estándar 2,271 ,57735 -1,732 Asimetría -,265 1,225 Error estándar de asimetría ,687 Curtosis ,611 Error estándar de curtosis 1,334 1,00 Rango 94,0000 Percentiles 25 277,00 280,25

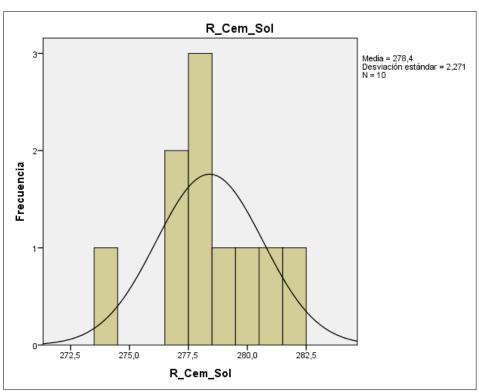


Figura N° 103: Histograma de frecuencia Resistencia del cemento Sol

Tabla N° 28: Resultados Estadísticos para cemento Quisqueya

Estadísticos

R_Cem_Quisqu Finura_Quisque eya ya N Válido 10 3 Perdidos 0 Media 224,50 93,2667 ,992 ,24037 Error estándar de la media 225,00 93,4000 Mediana Moda 220a 92,80a Desviación estándar 3,136 ,41633 Asimetría -,041 -1,293 Error estándar de asimetría ,687 1,225 Curtosis -,223 Error estándar de curtosis 1,334 Rango 10 ,80

221,50

226,25

92,8000

Fuente: Elaboración propia

25

75

Percentiles

a. Existen múltiples modos. Se muestra el valor más pequeño.

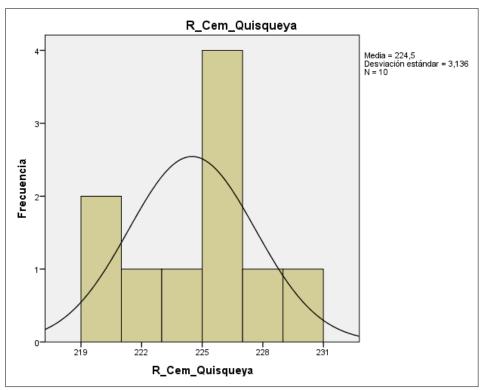


Figura N° 104: Histograma de frecuencia Resistencia del cemento Quisqueya Fuente: Elaboración Propia

Tabla N° 29: Resultados Estadísticos para cemento Pacasmayo

Estadísticos R_Cem_Pacasm Finura_Pacasma ayo yo N Válido 10 3 Perdidos 2 Media 186,10 92,5667 Error estándar de la media ,849 ,21858 Mediana 187,00 92,4000 Moda 188 92,30a Desviación estándar 2,685 ,37859 Asimetría -1,122 1,597 Error estándar de asimetría ,687 1,225 Curtosis ,159 Error estándar de curtosis 1,334 Rango 8 ,70 92,3000 Percentiles 25 184,25 75 188,00

a. Existen múltiples modos. Se muestra el valor más pequeño.

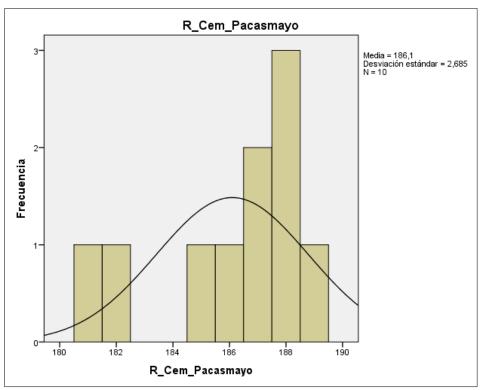


Figura N° 105: Histograma de frecuencia Resistencia del cemento Pacasmayo Fuente: Elaboración Propia

Tabla N° 29: Resultados Estadísticos para cemento Andino

Estadísticos

	R_Cem_Andino	Finura_Andino
N Válido	10	3
Perdidos	2	9
Media	146,20	89,7333
Error estándar de la media	,800	,40552
Mediana	145,50	89,8000
Moda	145	89,00a
Desviación estándar	2,530	,70238
Asimetría	,389	-,423
Error estándar de asimetría	,687	1,225
Curtosis	-,908	
Error estándar de curtosis	1,334	
Rango	7	1,40
Percentiles 25	144,50	89,0000
75	148,50	

a. Existen múltiples modos. Se muestra el valor más pequeño.

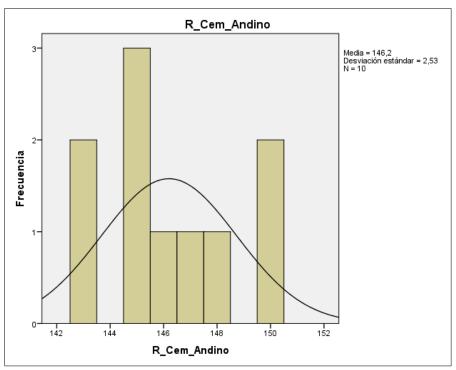


Figura N° 106: Histograma de frecuencia Resistencia del cemento Andino Fuente: Elaboración Propia

H_0 :

A mayor porcentaje de fineza del cemento Tipo I no incrementa la resistencia a la compresión.

H_1 :

A mayor porcentaje de fineza del cemento Tipo I incrementa la resistencia a la compresión.

Análisis estadístico

Para la evaluación de la hipótesis se usó la regresión de análisis de datos con el programa SPSS V22 el cual predijo la recta de regresión y obtuvo los resultados mostrados en la tabla 98 y 99:

Tabla N° 30: Coeficientes de la recta de regresión para los diferentes cementos Tipo I

Coeficientes^a Coeficientes Coeficientes no estandarizados estandarizados Modelo Error estándar Beta Sig. (Constante) -2102,129 289,153 -7,270 ,000 24,974 ,930 7,993 ,000 Finura 3,124

a. Variable dependiente: Resistencia

Con los coeficientes de correlación se mide la correlación lineal es decir la función que mejor se aproxima a la nube de puntos, puede ser lineal, de segundo grado, de tercer grado, logarítmica, exponencial, etc.

En estadística la regresión lineal o ajuste lineal es un método matemática que modela la relación entre una variable dependiente "Y" y las variables independiente "X".

La recta de regresión de "Y" sobre "X" se utiliza para estimar los valores de "Y" a partir de los valores de "X".

Este modelo se expresa como:

$$Y = a + bx$$

Donde:

Y = Resistencia (kg/cm2)

X = Porcentaje de finos en cada cemento de Tipo I (%)

A = Constante (intersección absicas)

b = Pendiente de la recta

Con los resultados expresados se forma la siguientes función de regresión lineal con resistencia a la compresión respecto al porcentaje de finos en cada cemento Tipo I respectivamente (Sol, Quisqueya, Pacasmayo y Andino)

$$y = 24.97x - 2102.12$$

En el siguiente gráfico se muestra la recta de regresión según los resultados obtenidos de las resistencias a la compresión en función al porcentaje de finos en cada cemento Tipo I.

La siguiente recta nos permite decir que nuestros modelos son efectivos dentro del rango de análisis de X desde el ensayo 1 hasta el ensayo 12 y que es eficiente porque cumple con el modelo de la ecuación encontrada. (Figura N° 107)

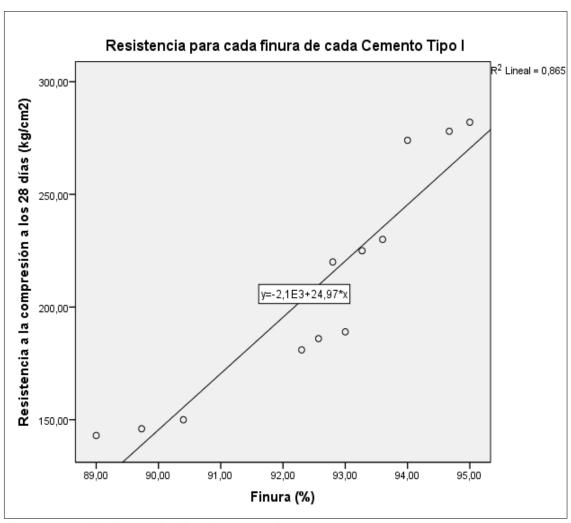


Figura 107: Modelo de regresión lineal cementos Tipo I

Coeficiente de determinación múltiple (R²)

En el contexto de un modelo estadístico cuyo principal propósito es probar una hipótesis. El coeficiente determina la calidad del modelo para replicar los resultados y la proporción de la variación de los resultados que pueda explicarse por el modelo. En este caso el R² es el cuadrado del coeficiente de correlación de Pearson, los cuales son solo para la regresión lineal. Por medio del uso del programa SPSS V22 se obtuvo los resultados mostrados en la tabla 100 .

Tabla N° 31: Resumen del modelo

Resumen del modelo

			R cuadrado	Error estándar
Modelo	R	R cuadrado	ajustado	de la estimación
1	,930a	,865	,851	19,69125

a. Predictores: (Constante), Finura

Fuente: Elaboración propia

Se tiene el resultado de r² para un gráfico resumen que demuestra como varia la resistencia en función al porcentaje de finos para los 4 cementos tipo I usados como muestras.

$$R^2 = 0.865$$

El resultado del r² expresa que la variable independiente (el porcentaje de finos de los 4 diferentes cementos Tipo I usados como muestra) influye un 86.5% respecto a la variable dependiente (resistencia a la compresión).

Conclusión

Usando el método de regresión lineal para la evaluación de la resistencia a la compresión en función al porcentaje de finos para cada cemento de Tipo I, se concluye que se rechaza la hipótesis nula (H0) y se acepta la hipótesis alterna (H1) ya que al incrementar el porcentaje de finos en cada cemento Tipo I usado aumentan la resistencia a la compresión se corrobora obteniendo un alto coeficiente de Determinación múltiple, además se puede apreciar que para el cemento Sol Tipo I es el cemento más recomendable por presentar mayor resistencia frente a un mayor porcentaje de finos.

CAPÍTULO V: DISCUSIÓN

DISCUSIÓN

- 1. Al obtener los resultados de resistencia a la compresión de los 4 cementos investigados y observar que tan importante es la resistencia para definir la mejor calidad de cemento, se corrobora con la investigación de Mejía de Gutiérrez la cual dio gran importancia a los parámetros de durabilidad como la absorción capilar, difusión de cloruros y el comportamiento frente a sulfatos para la mejor obtención del concreto.
- 2. En esta investigación se trabajó con un mortero para cada diferente marca de cemento Tipo I, a diferencia de la investigación de Ortiz el cual realizó un diseño de mezcla de concreto con la curva ideal de granulometría de Abrams y una relación agua-cemento de 0.48 para la evaluación de las propiedades mecánicas se realizaron pruebas de compresión para ambos casos obteniendo como resultados considerables variaciones de resistencia entre los diferentes Tipos de cementos.

CONCLUSIONES

- 1. Se concluye que se rechazan las hipótesis nulas (H0) y se aceptan las hipótesis alternas (H1) ya que al variar los diferentes cementos pórtland Tipo I se reducen sus tiempos de fraguado por ende reduce su trabajabilidad, además el incremento del porcentaje de finos en cada cemento Tipo I aumentan la resistencia a la compresión.
- 2. Para ambas hipótesis específicas se concluye que por tiempo de fraguado y por mejor resistencia a la compresión el mejor cemento es el "CEMENTO SOL PÓRTLAND TIPO I" y que el cemento con características más desfavorables en tiempo de fraguado y resistencia a la compresión es el "CEMENTO ANDINO TIPO I".
- 3. Al variar los diferentes cementos pórtland reducen sus tiempos de fraguado y de esta manera reducen su trabajabilidad, la variación más notoria que fue apreciada mediante la estadística de datos es la del cemento Andino, y se obtuvo una confiabilidad de 0.6 %, mientras que el cemento Sol es el más confiable con 34.7 %.
- 4. Por otro lado al ir incrementar el porcentaje de finos para cada cemento pórtland usado, aumenta la resistencia a la compresión, se apreció en la recta de regresión lineal con una confiabilidad de 86.5 % que el cemento Sol es el que presenta mayor resistencia a los 28 días y el Cemento Andino es la que tiene mas baja resistencia a la compresión a los 28 días.

RECOMENDACIONES

- Se recomienda que para tener una investigación más exacta de las propiedades de los cementos a nivel Nacional, se utilizen más diversidad de las marcas de cementos como pruebas, tales como: cemento Nacional, cemento APU, cemento INKA entre otros.
- 2. Se recomienda tener un exhaustivo cuidado para la evaluación estadística del comportamiento de los diferentes cementos debido a que éstos poseen niveles bajos en regresión lineal.

REFERENCIAS BIBLIOGRAFICAS

- Abanto, F. (2009). Tecnología del concreto. Lima, Perú: Editorial San Marcos.
- Huiñapi C. (2010). Propiedades principales del concreto. Recuperado de https://www.academia.edu/7813086/PROPIEDADES_PRINCIPALES_D EL_CONCRETO_FRESCO. Perú: Lima.
- Norma Técnica Peruana 334.051:2013, Método de ensayo para determinar la resistencia a la compresión de morteros de cemento Pórtland usando especímenes cúbicos de 50 mm de lado.
- Norma Técnica Peruana 334.074:2013, Método de ensayo para la cantidad de agua requerida para la determinación de la consistencia normal en pastas de cemento hidráulico
- Norma Técnica Peruana 334.006:2013, Determinación del tiempo de fraguado del cemento hidráulico utilizando la aguja de Vicat

Pasquel, E. (1998). Tópicos de tecnología del concreto del Perú.

ANEXO: Matriz de Consistencia

MABLES	INSTRUMENTOS	Libros	Normas Técnicas Ensayos de Laboratorio Libros Normas Técnicas Ensayos de Laboratorio Fichas Técnicas		Libros Normas Técnicas Ensayos de Laboratorio		Libros Normas Técnicas Ensayos de Laboratorio Fichas Técnicas	
ZACIÓN DE VAF	INDICES	Minuto Porcentaje		Minuto		Kg/cm2		
OPERACIONALIZACIÓN DE VARIABLES	INDICADORES	Tiempo Tiempo Finura del Cemento		Fragua Inicial y Final		Resistencia a la Compresión		
	VARIABLES		Variable Independiente Tipos de Cementos		<u>Variable</u> Dependiente		Propiedades Físicas del cemento	
5	HIPOTESIS	Hipótesis General	Al analizar los tipos de cementos portland Tipo I se optimiza las propiedades físico-mecánicas del cemento en Lima Metropolitana		Hipótesis Especificas	Al establecer el tiempo de fraguado se optimiza la fragua inicial y final del cemento portland Tipo I en Lima Metropolitana	•	Al determinar la finura del cemento se optimiza en la resistencia a la compresión en Lima Metropolitana
	OBJETIVO	Analizar que los tipos de cementos portland Tipo I influyen en las propiedades físico-mecánicas del cemento en Lima Metropolitana		Objetivos Específicos	Establecer que los tiempos de fraguado optimizan la fragua inicial y final del cemento portland tipo I en Lima Metropolitana	•	Determinar que la finura del cemento optimiza en la resistencia a la compresión en Lima Metropolitana	
	PROBLEMA	Problema General	En qué medida los tipos de cementos portland Tipo I	influyen en las propiedades físico-mecánicas del cemento en Lima Metropolitana	Problemas Específicos	En qué medida el tiempo de fraguado influye en la fragua inicial y final del cemento portland tipo I en	Lıma Metropolitana	En qué medida la finura del cemento influye en la resistencia a la compresión en Lima Metropolitana